606 research outputs found

    Congestion avoidance: optimization of vehicle routing planning for the logistics industry

    Get PDF
    This research focuses on the development of ecient solution methods to solve time dependent orienteering problems (TD-OP) in real time. Orienteering problems are used in logistic and touristic cases were an optimal combination of locations needs to be selected and the routing between the locations needs to be optimized. In the time dependent variant the travel time between two locations depends on the departure time at the rst location

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141

    A Critical Analysis of a Tourist Trip Design Problem with Time-Dependent Recommendation Factors and Waiting Times

    Get PDF
    Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here: http://github.com/cporrasn/TTDP_TDRF_WT_NWT.git.Acknowledgments: C.P. has been supported by a scholarship from AUIP Association coordinated with the Universidad de Granada. B.P.-C. was supported by the Erasmus+ programme of the European Union. The authors are grateful to the editors and the anonymous reviewers for their constructive comments and suggestions.The tourist trip design problem (TTDP) is a well-known extension of the orienteering problem, where the objective is to obtain an itinerary of points of interest for a tourist that maximizes his/her level of interest. In several situations, the interest of a point depends on when the point is visited, and the tourist may delay the arrival to a point in order to get a higher interest. In this paper, we present and discuss two variants of the TTDP with time-dependent recommendation factors (TTDP-TDRF), which may or may not take into account waiting times in order to have a better recommendation value. Using a mixed-integer linear programming solver, we provide solutions to 27 real-world instances. Although reasonable at first sight, we observed that including waiting times is not justified: in both cases (allowing or not waiting times) the quality of the solutions is almost the same, and the use of waiting times led to a model with higher solving times. This fact highlights the need to properly evaluate the benefits of making the problem model more complex than is actually needed.Projects PID2020-112754GB-I0, MCIN/AEI/10.13039/501100011033FEDER/Junta de Andalucía, Consejería de Transformación Económica, Industria, Conocimiento y Universidades/ Proyecto (B-TIC-640-UGR20

    Orienteering Problem: A survey of recent variants, solution approaches and applications

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    IoT analytics and agile optimization for solving dynamic team orienteering problems with mandatory visits

    Get PDF
    Transport activities and citizen mobility have a deep impact on enlarged smart cities. By analyzing Big Data streams generated through Internet of Things (IoT) devices, this paper aims to show the efficiency of using IoT analytics, as an agile optimization input for solving real-time problems in smart cities. IoT analytics has become the main core of large-scale Internet applications, however, its utilization in optimization approaches for real-time configuration and dynamic conditions of a smart city has been less discussed. The challenging research topic is how to reach real-time IoT analytics for use in optimization approaches. In this paper, we consider integrating IoT analytics into agile optimization problems. A realistic waste collection problem is modeled as a dynamic team orienteering problem with mandatory visits. Open data repositories from smart cities are used for extracting the IoT analytics to achieve maximum advantage under the city environment condition. Our developed methodology allows us to process real-time information gathered from IoT systems in order to optimize the vehicle routing decision under dynamic changes of the traffic environments. A series of computational experiments is provided in order to illustrate our approach and discuss its effectiveness. In these experiments, a traditional static approach is compared against a dynamic one. In the former, the solution is calculated only once at the beginning, while in the latter, the solution is re-calculated periodically as new data are obtained. The results of the experiments clearly show that our proposed dynamic approach outperforms the static one in terms of rewardsThis project has received the support of the Ajuntament of Barcelona and the Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001)Peer ReviewedPostprint (published version

    Solving Multi Objectives Team Orienteering Problem with Time Windows using Multi Integer Linear Programming

    Get PDF
    This study solves tourist trip planning using team orienteering problem with time windows with more than one objective. In MO-TOPTW, besides maximum score, there is minimum time that must be achieved to make sure tourist get effective and efficient routing. Score represent priority to visit the destinations, while time consist of visiting time and traveling time between destinations. Number of routing is determined and the goal is giving the tourist the best routing that fulfill all the constraints. The constraints are time windows and tourist’s budget time. Modification of mathematical programming will be done. We used small case to compare between heuristic procedure to develop the route with optimization. Optimization is implemented using Multi Integer Linear Programming using Lingo. The global optimum of optimization method gives better result than heuristic, with total score higher as 12% and total time lower 7.3%. Because this is NP-hard problem, the running time is 45 minutes 24 seconds, very long time for tourist to wait the result. Further research must be done to faster the process with preserving the best result

    Efficient neighborhood evaluations for the vehicle routing problem with multiple time windows

    Get PDF
    In the vehicle routing problem with multiple time windows (VRPMTW), a single time window must be selected for each customer from the multiple time windows provided. Compared with classical vehicle routing problems with only a single time window per customer, multiple time windows increase the complexity of the routing problem. To minimize the duration of any given route, we present an exact polynomial time algorithm to efficiently determine the optimal start time for servicing each customer. The proposed algorithm has a reduced worst-case and average complexity than existing exact algorithms. Furthermore, the proposed exact algorithm can be used to efficiently evaluate neighborhood operations during a local search resulting in significant acceleration. To examine the benefits of exact neighborhood evaluations and to solve the VRPMTW, the proposed algorithm is embedded in a simple metaheuristic framework generating numerous new best known solutions at competitive computation times
    corecore