95,087 research outputs found

    A Comprehensive Review of Vehicle Detection Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning

    Get PDF
    Design of a vision-based traffic analytic system for urban traffic video scenes has a great potential in context of Intelligent Transportation System (ITS). It offers useful traffic-related insights at much lower costs compared to their conventional sensor based counterparts. However, it remains a challenging problem till today due to the complexity factors such as camera hardware constraints, camera movement, object occlusion, object speed, object resolution, traffic flow density, and lighting conditions etc. ITS has many applications including and not just limited to queue estimation, speed detection and different anomalies detection etc. All of these applications are primarily dependent on sensing vehicle presence to form some basis for analysis. Moving cast shadows of vehicles is one of the major problems that affects the vehicle detection as it can cause detection and tracking inaccuracies. Therefore, it is exceedingly important to distinguish dynamic objects from their moving cast shadows for accurate vehicle detection and recognition. This paper provides an in-depth comparative analysis of different traffic paradigm-focused conventional and state-of-the-art shadow detection and removal algorithms. Till date, there has been only one survey which highlights the shadow removal methodologies particularly for traffic paradigm. In this paper, a total of 70 research papers containing results of urban traffic scenes have been shortlisted from the last three decades to give a comprehensive overview of the work done in this area. The study reveals that the preferable way to make a comparative evaluation is to use the existing Highway I, II, and III datasets which are frequently used for qualitative or quantitative analysis of shadow detection or removal algorithms. Furthermore, the paper not only provides cues to solve moving cast shadow problems, but also suggests that even after the advent of Convolutional Neural Networks (CNN)-based vehicle detection methods, the problems caused by moving cast shadows persists. Therefore, this paper proposes a hybrid approach which uses a combination of conventional and state-of-the-art techniques as a pre-processing step for shadow detection and removal before using CNN for vehicles detection. The results indicate a significant improvement in vehicle detection accuracies after using the proposed approach

    Detection and recognition of moving video objects: Kalman filtering with deep learning

    Get PDF
    © 2021. All rights reserved. Research in object recognition has lately found that Deep Convolutional Neuronal Networks (CNN) provide a breakthrough in detection scores, especially in video applications. This paper presents an approach for object recognition in videos by combining Kalman filter with CNN. Kalman filter is first applied for detection, removing the background and then cropping object. Kalman filtering achieves three important functions: predicting the future location of the object, reducing noise and interference from incorrect detections, and associating multi-objects to tracks. After detection and cropping the moving object, a CNN model will predict the category of object. The CNN model is built based on more than 1000 image of humans, animals and others, with architecture that consists of ten layers. The first layer, which is the input image, is of 100 * 100 size. The convolutional layer contains 20 masks with a size of 5 * 5, with a ruling layer to normalize data, then max-pooling. The proposed hybrid algorithm has been applied to 8 different videos with total duration of is 15.4 minutes, containing 23100 frames. In this experiment, recognition accuracy reached 100%, where the proposed system outperforms six existing algorithms

    Social Scene Understanding: End-to-End Multi-Person Action Localization and Collective Activity Recognition

    Get PDF
    We present a unified framework for understanding human social behaviors in raw image sequences. Our model jointly detects multiple individuals, infers their social actions, and estimates the collective actions with a single feed-forward pass through a neural network. We propose a single architecture that does not rely on external detection algorithms but rather is trained end-to-end to generate dense proposal maps that are refined via a novel inference scheme. The temporal consistency is handled via a person-level matching Recurrent Neural Network. The complete model takes as input a sequence of frames and outputs detections along with the estimates of individual actions and collective activities. We demonstrate state-of-the-art performance of our algorithm on multiple publicly available benchmarks

    Moving Object Trajectories Meta-Model And Spatio-Temporal Queries

    Full text link
    In this paper, a general moving object trajectories framework is put forward to allow independent applications processing trajectories data benefit from a high level of interoperability, information sharing as well as an efficient answer for a wide range of complex trajectory queries. Our proposed meta-model is based on ontology and event approach, incorporates existing presentations of trajectory and integrates new patterns like space-time path to describe activities in geographical space-time. We introduce recursive Region of Interest concepts and deal mobile objects trajectories with diverse spatio-temporal sampling protocols and different sensors available that traditional data model alone are incapable for this purpose.Comment: International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 201

    Robust hybrid technique for moving object detection and tracking using cartoon features and fast PCP

    Get PDF
    In various computer vision applications, the moving object detection is an essential step. Principal Component Analysis (PCA) techniques are often used for this purpose. However, the performance of this method is degraded by camera shake, hidden moving objects, dynamic background scenes, and / or fluctuating exposure. Robust Principal Component Analysis (RPCA) is a useful approach for reducing stationary background noise as it can recover low rank matrices. That is, moving object is formed by the low power models and the static background of RPCA. This paper proposes a simple alternative minimization algorithm to fix minor discrepancies in the original Principal Component Pursuit (PCP) or RPCA function. A novel hybrid method of cartoon texture features used as a data matrix for RPCA taking into account low-ranking and rare matrix is presented. A new non-convex function is proposed to better control the low-range properties of the video background. Simulation results demonstrate that the proposed algorithm is capable of giving consistent random estimates and can indeed improve the accuracy of object recognition in comparison with existing methods

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore