3,582 research outputs found

    A multiscale model for collagen alignment in wound healing

    Get PDF
    It is thought that collagen alignment plays a significant part in scar tissue formation during dermal wound healing. We present a multiscale model for collagen deposition and alignment during this process. We consider fibroblasts as discrete units moving within an extracellular matrix of collagen and fibrin modelled as continua. Our model includes flux induced alignment of collagen by fibroblasts, and contact guidance of fibroblasts by collagen fibres. We can use the model to predict the effects of certain manipulations, such as varying fibroblast speed, or placing an aligned piece of tissue in the wound. We also simulate experiments which alter the TGF-β concentrations in a healing dermal wound and use the model to offer an explanation of the observed influence of this growth factor on scarring

    Cancer modelling: Getting to the heart of the problem

    Get PDF
    Paradoxically, improvements in healthcare that have enhanced the life expectancy of humans in the Western world have, indirectly, increased the prevalence of certain types of cancer such as prostate and breast. It remains unclear whether this phenomenon should be attributed to the ageing process itself or the cumulative effect of prolonged exposure to harmful environmental stimuli such as ultraviolet light, radiation and carcinogens (Franks and Teich, 1988). Equally, there is also compelling evidence that certain genetic abnormalities can predispose individuals to specific cancers (Ilyas et al., 1999). The variety of factors that have been implicated in the development of solid tumours stems, to a large extent, from the fact that ‘cancer’ is a generic term, often used to characterize a series of disorders that share common features. At this generic level of description, cancer may be viewed as a cellular disease in which controls that usually regulate growth and maintain homeostasis are disrupted. Cancer is typically initiated by genetic mutations that lead to enhanced mitosis of a cell lineage and the formation of an avascular tumour. Since it receives nutrients by diffusion from the surrounding tissue, the size of an avascular tumour is limited to several millimeters in diameter. Further growth relies on the tumour acquiring the ability to stimulate the ingrowth of a new, circulating blood supply from the host vasculature via a process termed angiogenesis (Folkman, 1974). Once vascularised, the tumour has access to a vast nutrient source and rapid growth ensues. Further, tumour fragments that break away from the primary tumour, on entering the vasculature, may be transported to other organs in which they may establish secondary tumours or metastases that further compromise the host. Invasion is another key feature of solid tumours whereby contact with the tissue stimulates the production of enzymes that digest the tissue, liberating space into which the tumour cells migrate. Thus, cancer is a complex, multiscale process. The spatial scales of interest range from the subcellular level, to the cellular and macroscopic (or tissue) levels while the timescales may vary from seconds (or less) for signal transduction pathways to months for tumour doubling times The variety of phenomena involved, the range of spatial and temporal scales over which they act and the complex way in which they are inter-related mean that the development of realistic theoretical models of solid tumour growth is extremely challenging. While there is now a large literature focused on modelling solid tumour growth (for a review, see, for example, Preziosi, 2003), existing models typically focus on a single spatial scale and, as a result, are unable to address the fundamental problem of how phenomena at different scales are coupled or to combine, in a systematic manner, data from the various scales. In this article, a theoretical framework will be presented that is capable of integrating a hierarchy of processes occurring at different scales into a detailed model of solid tumour growth (Alarcon et al., 2004). The model is formulated as a hybrid cellular automaton and contains interlinked elements that describe processes at each spatial scale: progress through the cell cycle and the production of proteins that stimulate angiogenesis are accounted for at the subcellular level; cell-cell interactions are treated at the cellular level; and, at the tissue scale, attention focuses on the vascular network whose structure adapts in response to blood flow and angiogenic factors produced at the subcellular level. Further coupling between the different spatial scales arises from the transport of blood-borne oxygen into the tissue and its uptake at the cellular level. Model simulations will be presented to illustrate the effect that spatial heterogeneity induced by blood flow through the vascular network has on the tumour’s growth dynamics and explain how the model may be used to compare the efficacy of different anti-cancer treatment protocols

    Dissociable Learning Processes Underlie Human Pain Conditioning.

    Get PDF
    Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific "preparatory" system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals-the learned associability and prediction error-were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns "consummatory" limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits.Research was supported by National Institute for Information and Communications Technology (Japan), the Japanese Society for the Promotion of Science (JSPS) and The Wellcome Trust (UK). S.Z. was supported by the WD Armstrong Fund and the Cambridge Trust. G.G. was partially supported by the Kakenhi Research Grant B #13380602 from the Japan Society for the Promotion of Science. We thank the imaging team at the Center for Information and Neural Networks for their help in performing the study. The authors declare that there are no conflicts of interest.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.cub.2015.10.06

    3D microwave tomography with huber regularization applied to realistic numerical breast phantoms

    Get PDF
    Quantitative active microwave imaging for breast cancer screening and therapy monitoring applications requires adequate reconstruction algorithms, in particular with regard to the nonlinearity and ill-posedness of the inverse problem. We employ a fully vectorial three-dimensional nonlinear inversion algorithm for reconstructing complex permittivity profiles from multi-view single-frequency scattered field data, which is based on a Gauss-Newton optimization of a regularized cost function. We tested it before with various types of regularizing functions for piecewise-constant objects from Institut Fresnel and with a quadratic smoothing function for a realistic numerical breast phantom. In the present paper we adopt a cost function that includes a Huber function in its regularization term, relying on a Markov Random Field approach. The Huber function favors spatial smoothing within homogeneous regions while preserving discontinuities between contrasted tissues. We illustrate the technique with 3D reconstructions from synthetic data at 2GHz for realistic numerical breast phantoms from the University of Wisconsin-Madison UWCEM online repository: we compare Huber regularization with a multiplicative smoothing regularization and show reconstructions for various positions of a tumor, for multiple tumors and for different tumor sizes, from a sparse and from a denser data configuration

    Computational Models of the Amygdala in Acquisition and Extinction of Conditioned Fear

    Get PDF
    The amygdala plays a central role in both acquisition and expression of conditioned fear associations and dysregulation of the amygdala leads to fear and anxiety disorders such as posttraumatic stress disorder (PTSD). Computational modeling has served as an important tool to understand the cellular and circuit mechanisms of fear acquisition and extinction. This review provides a critical appraisal of existing computational modeling studies of the amygdala and extended circuitry in acquisition and extinction of learned fear associations. It gives a broad overview of the computational techniques applied to amygdala modeling with an emphasis on how computational models could shed light on the neural mechanisms of fear learning, inform experimental design, and lead to specific, experimentally testable hypotheses. It covers different types of published models including rule‐based models, connectionist type models, phenomenological spiking neuronal models, and detailed biophysical conductance‐based models. Specific attention is given to the evolution of amygdala models from simple rule‐based and connectionist type models to more sophisticated and biologically realistic models. Future direction on computational modeling of the amygdala and associated networks in emotional learning is also discussed

    A theory for the alignment of cortical feature maps during\ud development

    Get PDF
    We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience–dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps

    An Integrative Approach Concerning Radiological Protection of the Environment: Plant Influence on Biogeochemistry and Transport, Plant Uptake, and Non-Human Biota Dosimetry for Select Radionuclides

    Get PDF
    The fields of radioecology and environmental radiation protection encompass a multitude of interdisciplinary specialties relating to the use, transport, and effects associated with radioactive substances in the environment, which often must inform each other in an integrated and iterative manner. As these fields have begun to consider a more holistic approach to environmental radiation protection, there is not only a need to evaluate fate and transport of radionuclides in the environment, but also a need to consider the dose and impacts to non-human biota residing in contaminated (or potentially contaminated) areas. Thus, the overall objective of this work was to demonstrate an explicit, integrated, and holistic approach to environmental radiation protection in a soil-plant-hydrologic system. This was accomplished through a series of radionuclide transport studies and non-human biota dosimetric model development. The focused objective of the transport studies was to examine and quantify the influence of an indigenous grass species, Andropogon virginicus (broomsedge), on the mobility of a broad suite of radionuclides (technetium, cesium, neptunium, and uranium) in the vadose zone of Savannah River Site (SRS) soil. Specific experiments sought to elucidate and quantify key influential factors associated with individual system components; batch experiments probed impacts of root exudates on sorption, and hydroponic plant experiments investigated tissue uptake and translocation potential, accounting for the influence of plant growth stage. These experiments were then combined into an integrated system utilizing laboratory-scale vegetated and unvegetated soil columns allowing radionuclide uptake, transport, and soil profile distributions to be evaluated in a controlled, but more environmentally realistic system. Concurrently, the main objective of the dosimetric modeling portion of this work was to develop and compare several increasingly realistic, organism-specific computational dosimetric models for A. virginicus and to apply plant uptake data (from hydroponic uptake experiments) to determine organism dose rates as an example of application. In addition to the individual studies informing each other, this work also has the potential to influence and inform future work on this system or in the wider radioecology community. For example, both the transport studies and the dosimetric models may be useful for tiered environmental risk assessment evaluations and the most anatomically realistic, higher fidelity dosimetric models have the potential to be utilized in organism-specific dose-effect studies

    Histomorphometric analysis of the temporal bone after change of direction of force vector of mandible: an experimental study in rabbits

    Get PDF
    OBJECTIVES: The present study aimed at performing a histological evaluation of the response of temporal bone tissue to a change of direction of the force vector of the mandible in relation to the base of the skull. MATERIAL AND METHODS: Adult rabbits were assigned into four groups with two control and four experimental animals in each group. experimental animals underwent surgery, which resulted in a change of direction of the force vector on the right temporomandibular joint. Samples were collected after 15, 30, 60 and 90 days for histological analysis. RESULTS: In the two-way analysis of variance, the effect of group and time was statistically significant (

    Consciousness CLEARS the Mind

    Full text link
    A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore