93 research outputs found

    VLSI architectures design for encoders of High Efficiency Video Coding (HEVC) standard

    Get PDF
    The growing popularity of high resolution video and the continuously increasing demands for high quality video on mobile devices are producing stronger needs for more efficient video encoder. Concerning these desires, HEVC, a newest video coding standard, has been developed by a joint team formed by ISO/IEO MPEG and ITU/T VCEG. Its design goal is to achieve a 50% compression gain over its predecessor H.264 with an equal or even higher perceptual video quality. Motion Estimation (ME) being as one of the most critical module in video coding contributes almost 50%-70% of computational complexity in the video encoder. This high consumption of the computational resources puts a limit on the performance of encoders, especially for full HD or ultra HD videos, in terms of coding speed, bit-rate and video quality. Thus the major part of this work concentrates on the computational complexity reduction and improvement of timing performance of motion estimation algorithms for HEVC standard. First, a new strategy to calculate the SAD (Sum of Absolute Difference) for motion estimation is designed based on the statistics on property of pixel data of video sequences. This statistics demonstrates the size relationship between the sum of two sets of pixels has a determined connection with the distribution of the size relationship between individual pixels from the two sets. Taking the advantage of this observation, only a small proportion of pixels is necessary to be involved in the SAD calculation. Simulations show that the amount of computations required in the full search algorithm is reduced by about 58% on average and up to 70% in the best case. Secondly, from the scope of parallelization an enhanced TZ search for HEVC is proposed using novel schemes of multiple MVPs (motion vector predictor) and shared MVP. Specifically, resorting to multiple MVPs the initial search process is performed in parallel at multiple search centers, and the ME processing engine for PUs within one CU are parallelized based on the MVP sharing scheme on CU (coding unit) level. Moreover, the SAD module for ME engine is also parallelly implemented for PU size of 32×32. Experiments indicate it achieves an appreciable improvement on the throughput and coding efficiency of the HEVC video encoder. In addition, the other part of this thesis is contributed to the VLSI architecture design for finding the first W maximum/minimum values targeting towards high speed and low hardware cost. The architecture based on the novel bit-wise AND scheme has only half of the area of the best reference solution and its critical path delay is comparable with other implementations. While the FPCG (full parallel comparison grid) architecture, which utilizes the optimized comparator-based structure, achieves 3.6 times faster on average on the speed and even 5.2 times faster at best comparing with the reference architectures. Finally the architecture using the partial sorting strategy reaches a good balance on the timing performance and area, which has a slightly lower or comparable speed with FPCG architecture and a acceptable hardware cost

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    A Cost Shared Quantization Algorithm and its Implementation for Multi-Standard Video CODECS

    Get PDF
    The current trend of digital convergence creates the need for the video encoder and decoder system, known as codec in short, that should support multiple video standards on a single platform. In a modern video codec, quantization is a key unit used for video compression. In this thesis, a generalized quantization algorithm and hardware implementation is presented to compute quantized coefficient for six different video codecs including the new developing codec High Efficiency Video Coding (HEVC). HEVC, successor to H.264/MPEG-4 AVC, aims to substantially improve coding efficiency compared to AVC High Profile. The thesis presents a high performance circuit shared architecture that can perform the quantization operation for HEVC, H.264/AVC, AVS, VC-1, MPEG- 2/4 and Motion JPEG (MJPEG). Since HEVC is still in drafting stage, the architecture was designed in such a way that any final changes can be accommodated into the design. The proposed quantizer architecture is completely division free as the division operation is replaced by multiplication, shift and addition operations. The design was implemented on FPGA and later synthesized in CMOS 0.18 μm technology. The results show that the proposed design satisfies the requirement of all codecs with a maximum decoding capability of 60 fps at 187.3 MHz for Xilinx Virtex4 LX60 FPGA of a 1080p HD video. The scheme is also suitable for low-cost implementation in modern multi-codec systems

    JOINT CODING OF MULTIMODAL BIOMEDICAL IMAGES US ING CONVOLUTIONAL NEURAL NETWORKS

    Get PDF
    The massive volume of data generated daily by the gathering of medical images with different modalities might be difficult to store in medical facilities and share through communication networks. To alleviate this issue, efficient compression methods must be implemented to reduce the amount of storage and transmission resources required in such applications. However, since the preservation of all image details is highly important in the medical context, the use of lossless image compression algorithms is of utmost importance. This thesis presents the research results on a lossless compression scheme designed to encode both computerized tomography (CT) and positron emission tomography (PET). Different techniques, such as image-to-image translation, intra prediction, and inter prediction are used. Redundancies between both image modalities are also investigated. To perform the image-to-image translation approach, we resort to lossless compression of the original CT data and apply a cross-modality image translation generative adversarial network to obtain an estimation of the corresponding PET. Two approaches were implemented and evaluated to determine a PET residue that will be compressed along with the original CT. In the first method, the residue resulting from the differences between the original PET and its estimation is encoded, whereas in the second method, the residue is obtained using encoders inter-prediction coding tools. Thus, in alternative to compressing two independent picture modalities, i.e., both images of the original PET-CT pair solely the CT is independently encoded alongside with the PET residue, in the proposed method. Along with the proposed pipeline, a post-processing optimization algorithm that modifies the estimated PET image by altering the contrast and rescaling the image is implemented to maximize the compression efficiency. Four different versions (subsets) of a publicly available PET-CT pair dataset were tested. The first proposed subset was used to demonstrate that the concept developed in this work is capable of surpassing the traditional compression schemes. The obtained results showed gains of up to 8.9% using the HEVC. On the other side, JPEG2k proved not to be the most suitable as it failed to obtain good results, having reached only -9.1% compression gain. For the remaining (more challenging) subsets, the results reveal that the proposed refined post-processing scheme attains, when compared to conventional compression methods, up 6.33% compression gain using HEVC, and 7.78% using VVC

    深層学習に基づく画像圧縮と品質評価

    Get PDF
    早大学位記番号:新8427早稲田大

    Boosting Neural Image Compression for Machines Using Latent Space Masking

    Full text link
    Today, many image coding scenarios do not have a human as final intended user, but rather a machine fulfilling computer vision tasks on the decoded image. Thereby, the primary goal is not to keep visual quality but maintain the task accuracy of the machine for a given bitrate. Due to the tremendous progress of deep neural networks setting benchmarking results, mostly neural networks are employed to solve the analysis tasks at the decoder side. Moreover, neural networks have also found their way into the field of image compression recently. These two developments allow for an end-to-end training of the neural compression network for an analysis network as information sink. Therefore, we first roll out such a training with a task-specific loss to enhance the coding performance of neural compression networks. Compared to the standard VVC, 41.4% of bitrate are saved by this method for Mask R-CNN as analysis network on the uncompressed Cityscapes dataset. As a main contribution, we propose LSMnet, a network that runs in parallel to the encoder network and masks out elements of the latent space that are presumably not required for the analysis network. By this approach, additional 27.3% of bitrate are saved compared to the basic neural compression network optimized with the task loss. In addition, we are the first to utilize a feature-based distortion in the training loss within the context of machine-to-machine communication, which allows for a training without annotated data. We provide extensive analyses on the Cityscapes dataset including cross-evaluation with different analysis networks and present exemplary visual results. Inference code and pre-trained models are published at https://github.com/FAU-LMS/NCN_for_M2M.Comment: 12 pages, 9 figures, 3 tables; This work has been accepted for IEEE T-CSVT special issue "Learned Visual Data Compression for both Human and Machine". Copyright may be transferred without notice, after which this version may no longer be accessibl

    Application of a Bi-Geometric Transparent Composite Model to HEVC: Residual Data Modelling and Rate Control

    Get PDF
    Among various transforms, the discrete cosine transform (DCT) is the most widely used one in multimedia compression technologies for different image or video coding standards. During the development of image or video compression, a lot of interest has been attracted to understand the statistical distribution of DCT coefficients, which would be useful to design compression techniques, such as quantization, entropy coding and rate control. Recently, a bi-geometric transparent composite model (BGTCM) has been developed to provide modelling of distribution of DCT coefficients with both simplicity and accuracy. It has been reported that for DCT coefficients obtained from original images, which is applied in image coding, a transparent composite model (TCM) can provide better modelling than Laplacian. In video compression, such as H.264/AVC, DCT is performed on residual images obtained after prediction with different transform sizes. What's more, in high efficiency video coding(HEVC) which is the newest video coding standard, besides DCT as the main transform tool, discrete sine transform (DST) and transform skip (TS) techniques are possibly performed on residual data in small blocks. As such, the distribution of transformed residual data differs from that of transformed original image data. In this thesis, the distribution of coefficients, including those from all DCT, DST and TS blocks, is analysed based on BGTCM. To be specific, firstly, the distribution of all the coefficients from the whole frame is examined. Secondly, in HEVC, the entropy coding is implemented based on the new encoding concept, coefficient group (CG) with size 4*4, where quantized coefficients are encoded with context models based on their scan indices in each CG. To simulate the encoding process, coefficients at the same scan indices among different CGs are grouped together to form a set. Distribution of coefficients in each set is analysed. Based on our result, BGTCM is better than other widely used distributions, such as Laplacian and Cauchy distributions, in both x^2 and KL-divergence testing. Furthermore, unlike the way based on Laplacian and Cauchy distribution, the BGTCM can be used to model rate-quantization (R-Q) and distortion-quantization (D-Q) models without approximation expressions. R-Q and D-Q models based on BGTCM can reflect the distribution of coefficients, which are important in rate control. In video coding, rate control involves these two models to generate a suitable quantization parameter without multi-passes encoding in order to maintain the coding efficiency and to generate required rate to satisfy rate requirement. In this thesis, based on BGTCM, rate control in HEVC is revised with much increase in coding efficiency and decrease in rate fluctuation in terms of rate variance among frames for constant bit rate requirement.1 yea

    Video Stream Adaptation In Computer Vision Systems

    Get PDF
    Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and run CV algorithms for decisions, warnings, control, and/or other actions. Real-time CV systems have constraints in power, computational, and communicational resources. Most video adaptation techniques considered the video distortion as the primary metric. In CV systems, however, the main objective is enhancing the event/object detection/recognition/tracking accuracy. The accuracy can essentially be thought of as the quality perceived by machines, as opposed to the human perceptual quality. High-Efficiency Video Coding (HEVC) is a recent encoding standard that seeks to address the limited communication bandwidth problem as a result of the popularity of High Definition (HD) videos. Unfortunately, HEVC adopts algorithms that greatly slow down the encoding process, and thus results in complications in real-time systems. This dissertation presents a method for adapting live video streams to limited and varying network bandwidth and energy resources. It analyzes and compares the rate-accuracy and rate-energy characteristics of various video streams adaptation techniques in CV systems. We model the video capturing, encoding, and transmission aspects and then provide an overall model of the power consumed by the video cameras and/or sensors. In addition to modeling the power consumption, we model the achieved bitrate of video encoding. We validate and analyze the power consumption models of each phase as well as the aggregate power consumption model through extensive experiments. The analysis includes examining individual parameters separately and examining the impacts of changing more than one parameter at a time. For HEVC, we develop an algorithm that predicts the size of the block without iterating through the exhaustive Rate Distortion Optimization (RDO) method. We demonstrate the effectiveness of the proposed algorithm in comparison with existing algorithms. The proposed algorithm achieves approximately 5 times the encoding speed of the RDO algorithm and 1.42 times the encoding speed of the fastest analyzed algorithm

    Practical Distributed Video Coding in Packet Lossy Channels

    Get PDF
    Improving error resilience of video communications over packet lossy channels is an important and tough task. We present a framework to optimize the quality of video communications based on distributed video coding (DVC) in practical packet lossy network scenarios. The peculiar characteristics of DVC indeed require a number of adaptations to take full advantage of its intrinsic robustness when dealing with data losses of typical real packet networks. This work proposes a new packetization scheme, an investigation of the best error-correcting codes to use in a noisy environment, a practical rate-allocation mechanism, which minimizes decoder feedback, and an improved side-information generation and reconstruction function. Performance comparisons are presented with respect to a conventional packet video communication using H.264/advanced video coding (AVC). Although currently the H.264/AVC rate-distortion performance in case of no loss is better than state-of-the-art DVC schemes, under practical packet lossy conditions, the proposed techniques provide better performance with respect to an H.264/AVC-based system, especially at high packet loss rates. Thus the error resilience of the proposed DVC scheme is superior to the one provided by H.264/AVC, especially in the case of transmission over packet lossy networks
    corecore