101 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Ultra Low Energy Analog Image Processing Using Spin Neurons

    Full text link
    In this work we present an ultra low energy, 'on-sensor' image processing architecture, based on cellular array of spin based neurons. The 'neuron' constitutes of a lateral spin valve (LSV) with multiple input magnets, connected to an output magnet, using metal channels. The low resistance, magneto-metallic neurons operate at a small terminal voltage of ~20mV, while performing analog computation upon photo sensor inputs. The static current-flow across the device terminals is limited to small periods, corresponding to magnet switching time, and, is determined by a low duty-cycle system-clock. Thus, the energy-cost of analog-mode processing, inevitable in most image sensing applications, is reduced and made comparable to that of dynamic and leakage power consumption in peripheral CMOS units. Performance of the proposed architecture for some common image sensing and processing applications like, feature extraction, halftone compression and digitization, have been obtained through physics based device simulation framework, coupled with SPICE. Results indicate that the proposed design scheme can achieve more than two orders of magnitude reduction in computation energy, as compared to the state of art CMOS designs, that are based on conventional mixed-signal image acquisition and processing schemes. To the best of authors' knowledge, this is the first work where application of nano magnets (in LSV's) in analog signal processing has been proposed

    Media processor implementations of image rendering algorithms

    Get PDF
    Demands for fast execution of image processing are a driving force for today\u27s computing market. Many image processing applications require intense numeric calculations to be done on large sets of data with minimal overhead time. To meet this challenge, several approaches have been used. Custom-designed hardware devices are very fast implementations used in many systems today. However, these devices are very expensive and inflexible. General purpose computers with enhanced multimedia instructions offer much greater flexibility but process data at a much slower rate than the custom-hardware devices. Digital signal processors (DSP\u27s) and media processors, such as the MAP-CA created by Equator Technologies, Inc., may be an efficient alternative that provides a low-cost combination of speed and flexibility. Today, DSP\u27s and media processors are commonly used in image and video encoding and decoding, including JPEG and MPEG processing techniques. Little work has been done to determine how well these processors can perform other image process ing techniques, specifically image rendering for printing. This project explores various image rendering algorithms and the performance achieved by running them on a me dia processor to determine if this type of processor is a viable competitor in the image rendering domain. Performance measurements obtained when implementing rendering algorithms on the MAP-CA show that a 4.1 speedup can be achieved with neighborhood-type processes, while point-type processes achieve an average speedup of 21.7 as compared to general purpose processor implementations

    Radial Basis Functions: Biomedical Applications and Parallelization

    Get PDF
    Radial basis function (RBF) is a real-valued function whose values depend only on the distances between an interpolation point and a set of user-specified points called centers. RBF interpolation is one of the primary methods to reconstruct functions from multi-dimensional scattered data. Its abilities to generalize arbitrary space dimensions and to provide spectral accuracy have made it particularly popular in different application areas, including but not limited to: finding numerical solutions of partial differential equations (PDEs), image processing, computer vision and graphics, deep learning and neural networks, etc. The present thesis discusses three applications of RBF interpolation in biomedical engineering areas: (1) Calcium dynamics modeling, in which we numerically solve a set of PDEs by using meshless numerical methods and RBF-based interpolation techniques; (2) Image restoration and transformation, where an image is restored from its triangular mesh representation or transformed under translation, rotation, and scaling, etc. from its original form; (3) Porous structure design, in which the RBF interpolation used to reconstruct a 3D volume containing porous structures from a set of regularly or randomly placed points inside a user-provided surface shape. All these three applications have been investigated and their effectiveness has been supported with numerous experimental results. In particular, we innovatively utilize anisotropic distance metrics to define the distance in RBF interpolation and apply them to the aforementioned second and third applications, which show significant improvement in preserving image features or capturing connected porous structures over the isotropic distance-based RBF method. Beside the algorithm designs and their applications in biomedical areas, we also explore several common parallelization techniques (including OpenMP and CUDA-based GPU programming) to accelerate the performance of the present algorithms. In particular, we analyze how parallel programming can help RBF interpolation to speed up the meshless PDE solver as well as image processing. While RBF has been widely used in various science and engineering fields, the current thesis is expected to trigger some more interest from computational scientists or students into this fast-growing area and specifically apply these techniques to biomedical problems such as the ones investigated in the present work

    Automatic image registration and defect identification of a class of structural artifacts in printed documents

    Get PDF
    The work in this thesis proposes a defect analysis system, which automatically aligns a digitized copy of a printed output to a reference electronic original and highlights image defects. We focus on a class of image defects or artifacts caused by shortfalls in the mechanical or electro-photographic processes that include spots, deletions and debris missing deletions. The algorithm begins with image registration performed using a logpolar transformation and mutual information techniques. A confidence map is then calculated by comparing the contrast and entropy in the neighborhood of each pixel in both the printed document and corresponding electronic original. This results in a qualitative difference map of the two images highlighting the detected defects. The algorithm was demonstrated successfully on a collection of 99 printed images based on 11 original electronic images and test patterns printed on 9 different faulty printers provided by Xerox Corporation. The proposed algorithm is effective in aligning digitized printed output irrespective of translation, rotation and scale variations, and identifying defects in color inconsistent hardcopies

    Robust image steganography method suited for prining = Robustna steganografska metoda prilagođena procesu tiska

    Get PDF
    U ovoj doktorskoj dizertaciji prezentirana je robustna steganografska metoda razvijena i prilagođena za tisak. Osnovni cilj metode je pružanje zaštite od krivotvorenja ambalaže. Zaštita ambalaže postiže se umetanjem više bitova informacije u sliku pri enkoderu, a potom maskiranjem informacije kako bi ona bila nevidljiva ljudskom oku. Informacija se pri dekoderu detektira pomoću infracrvene kamere. Preliminarna istraživanja pokazala su da u relevantnoj literaturi nedostaje metoda razvijenih za domenu tiska. Razlog za takav nedostatak jest činjenica da razvijanje steganografskih metoda za tisak zahtjeva veću količinu resursa i materijala, u odnosu na razvijanje sličnih domena za digitalnu domenu. Također, metode za tisak često zahtijevaju višu razinu kompleksnosti, budući da se tijekom reprodukcije pojavljuju razni oblici procesiranja koji mogu kompromitirati informaciju u slici [1]. Da bi se sačuvala skrivena informacija, metoda mora biti otporna na procesiranje koje se događa tijekom reprodukcije. Kako bi se postigla visoka razina otpornosti, informacija se može umetnuti unutar frekvencijske domene slike [2], [3]. Frekvencijskoj domeni slike možemo pristupiti pomoću matematičkih transformacija. Najčešće se koriste diskretna kosinusna transformacija (DCT), diskretna wavelet transformacija (DWT) i diskretna Fourierova transformacija (DFT) [2], [4]. Korištenje svake od navedenih transformacija ima određene prednosti i nedostatke, ovisno o kontekstu razvijanja metode [5]. Za metode prilagođene procesu tiska, diskretna Fourierova transformacija je optimalan odabir, budući da metode bazirane na DFT-u pružaju otpornost na geometrijske transformacije koje se događaju tijekom reprodukcije [5], [6]. U ovom istraživanju korištene su slike u cmyk prostoru boja. Svaka slika najprije je podijeljena u blokove, a umetanje informacije vrši se za svaki blok pojedinačno. Pomoću DFT-a, ???? kanal slikovnog bloka se transformira u frekvencijsku domenu, gdje se vrši umetanje informacije. Akromatska zamjena koristi se za maskiranje vidljivih artefakata nastalih prilikom umetanja informacije. Primjeri uspješnog korištenja akromatske zamjene za maskiranje artefakata mogu se pronaći u [7] i [8]. Nakon umetanja informacije u svaki slikovni blok, blokovi se ponovno spajaju u jednu, jedinstvenu sliku. Akromatska zamjena tada mijenja vrijednosti c, m i y kanala slike, dok kanal k, u kojemu se nalazi umetnuta informacija, ostaje nepromijenjen. Time nakon maskiranja akromatskom zamjenom označena slika posjeduje ista vizualna svojstva kao i slika prije označavanja. U eksperimentalnom dijelu rada koristi se 1000 slika u cmyk prostoru boja. U digitalnom okruženju provedeno je istraživanje otpornosti metode na slikovne napade specifične za reprodukcijski proces - skaliranje, blur, šum, rotaciju i kompresiju. Također, provedeno je istraživanje otpornosti metode na reprodukcijski proces, koristeći tiskane uzorke. Objektivna metrika bit error rate (BER) korištena je za evaluaciju. Mogućnost optimizacije metode testirala se procesiranjem slike (unsharp filter) i korištenjem error correction kodova (ECC). Provedeno je istraživanje kvalitete slike nakon umetanja informacije. Za evaluaciju su korištene objektivne metrike peak signal to noise ratio (PSNR) i structural similarity index measure (SSIM). PSNR i SSIM su tzv. full-reference metrike. Drugim riječima, potrebne su i neoznačena i označena slika istovremeno, kako bi se mogla utvrditi razina sličnosti između slika [9], [10]. Subjektivna analiza provedena je na 36 ispitanika, koristeći ukupno 144 uzorka slika. Ispitanici su ocijenjivali vidljivost artefakata na skali od nula (nevidljivo) do tri (vrlo vidljivo). Rezultati pokazuju da metoda posjeduje visoku razinu otpornosti na reprodukcijski proces. Također, metoda se uistinu optimizirala korištenjem unsharp filtera i ECC-a. Kvaliteta slike ostaje visoka bez obzira na umetanje informacije, što su potvrdili rezultati eksperimenata s objektivnim metrikama i subjektivna analiza

    Hardware-accelerated algorithms in visual computing

    Get PDF
    This thesis presents new parallel algorithms which accelerate computer vision methods by the use of graphics processors (GPUs) and evaluates them with respect to their speed, scalability, and the quality of their results. It covers the fields of homogeneous and anisotropic diffusion processes, diffusion image inpainting, optic flow, and halftoning. In this turn, it compares different solvers for homogeneous diffusion and presents a novel \u27extended\u27 box filter. Moreover, it suggests to use the fast explicit diffusion scheme (FED) as an efficient and flexible solver for nonlinear and in particular for anisotropic parabolic diffusion problems on graphics hardware. For elliptic diffusion-like processes, it recommends to use cascadic FED or Fast Jacobi schemes. The presented optic flow algorithm represents one of the fastest yet very accurate techniques. Finally, it presents a novel halftoning scheme which yields state-of-the-art results for many applications in image processing and computer graphics.Diese Arbeit präsentiert neue parallele Algorithmen zur Beschleunigung von Methoden in der Bildinformatik mittels Grafikprozessoren (GPUs), und evaluiert diese im Hinblick auf Geschwindigkeit, Skalierungsverhalten, und Qualität der Resultate. Sie behandelt dabei die Gebiete der homogenen und anisotropen Diffusionsprozesse, Inpainting (Bildvervollständigung) mittels Diffusion, die Bestimmung des optischen Flusses, sowie Halbtonverfahren. Dabei werden verschiedene Löser für homogene Diffusion verglichen und ein neuer \u27erweiterter\u27 Mittelwertfilter präsentiert. Ferner wird vorgeschlagen, das schnelle explizite Diffusionsschema (FED) als effizienten und flexiblen Löser für parabolische nichtlineare und speziell anisotrope Diffusionsprozesse auf Grafikprozessoren einzusetzen. Für elliptische diffusionsartige Prozesse wird hingegen empfohlen, kaskadierte FED- oder schnelle Jacobi-Verfahren einzusetzen. Der vorgestellte Algorithmus zur Berechnung des optischen Flusses stellt eines der schnellsten und dennoch äußerst genauen Verfahren dar. Schließlich wird ein neues Halbtonverfahren präsentiert, das in vielen Bereichen der Bildverarbeitung und Computergrafik Ergebnisse produziert, die den Stand der Technik repräsentieren

    Real-time Ultrasound Signals Processing: Denoising and Super-resolution

    Get PDF
    Ultrasound acquisition is widespread in the biomedical field, due to its properties of low cost, portability, and non-invasiveness for the patient. The processing and analysis of US signals, such as images, 2D videos, and volumetric images, allows the physician to monitor the evolution of the patient's disease, and support diagnosis, and treatments (e.g., surgery). US images are affected by speckle noise, generated by the overlap of US waves. Furthermore, low-resolution images are acquired when a high acquisition frequency is applied to accurately characterise the behaviour of anatomical features that quickly change over time. Denoising and super-resolution of US signals are relevant to improve the visual evaluation of the physician and the performance and accuracy of processing methods, such as segmentation and classification. The main requirements for the processing and analysis of US signals are real-time execution, preservation of anatomical features, and reduction of artefacts. In this context, we present a novel framework for the real-time denoising of US 2D images based on deep learning and high-performance computing, which reduces noise while preserving anatomical features in real-time execution. We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D images, and we apply denoising algorithms that account for spatio-temporal signal properties into an image-to-image deep learning model. As a building block of this framework, we propose a novel denoising method belonging to the class of low-rank approximations, which learns and predicts the optimal thresholds of the Singular Value Decomposition. While previous denoise work compromises the computational cost and effectiveness of the method, the proposed framework achieves the results of the best denoising algorithms in terms of noise removal, anatomical feature preservation, and geometric and texture properties conservation, in a real-time execution that respects industrial constraints. The framework reduces the artefacts (e.g., blurring) and preserves the spatio-temporal consistency among frames/slices; also, it is general to the denoising algorithm, anatomical district, and noise intensity. Then, we introduce a novel framework for the real-time reconstruction of the non-acquired scan lines through an interpolating method; a deep learning model improves the results of the interpolation to match the target image (i.e., the high-resolution image). We improve the accuracy of the prediction of the reconstructed lines through the design of the network architecture and the loss function. %The design of the deep learning architecture and the loss function allow the network to improve the accuracy of the prediction of the reconstructed lines. In the context of signal approximation, we introduce our kernel-based sampling method for the reconstruction of 2D and 3D signals defined on regular and irregular grids, with an application to US 2D and 3D images. Our method improves previous work in terms of sampling quality, approximation accuracy, and geometry reconstruction with a slightly higher computational cost. For both denoising and super-resolution, we evaluate the compliance with the real-time requirement of US applications in the medical domain and provide a quantitative evaluation of denoising and super-resolution methods on US and synthetic images. Finally, we discuss the role of denoising and super-resolution as pre-processing steps for segmentation and predictive analysis of breast pathologies
    corecore