9,165 research outputs found

    Multimedia Content Distribution in Hybrid Wireless Networks using Weighted Clustering

    Get PDF
    Fixed infrastructured networks naturally support centralized approaches for group management and information provisioning. Contrary to infrastructured networks, in multi-hop ad-hoc networks each node acts as a router as well as sender and receiver. Some applications, however, requires hierarchical arrangements that-for practical reasons-has to be done locally and self-organized. An additional challenge is to deal with mobility that causes permanent network partitioning and re-organizations. Technically, these problems can be tackled by providing additional uplinks to a backbone network, which can be used to access resources in the Internet as well as to inter-link multiple ad-hoc network partitions, creating a hybrid wireless network. In this paper, we present a prototypically implemented hybrid wireless network system optimized for multimedia content distribution. To efficiently manage the ad-hoc communicating devices a weighted clustering algorithm is introduced. The proposed localized algorithm deals with mobility, but does not require geographical information or distances.Comment: 2nd ACM Workshop on Wireless Multimedia Networking and Performance Modeling 2006 (ISBN 1-59593-485

    MHCP: Multimedia Hybrid Cloud Computing Protocol and Architecture for Mobile Devices

    Full text link
    [EN] Multimedia cloud computing has appeared as a very attractive environment for the business world in terms of providing cost-effective services with a minimum of entry costs and infrastructure requirements. There are some architecture proposals in the related literature, but there is no multimedia cloud computing architecture with hybrid features specifically designed for mobile devices. In this article, we propose a new multimedia hybrid cloud computing architecture and protocol. It merges existing private and public clouds and combines IaaS, SaaS and SECaaS cloud computing models in order to find a common platform to deliver real time traffic from heterogeneous multimedia and social networks for mobile users. The developed protocol provides suitable levels of QoS, while providing a secure and trusted cloud environment.Jimenez, JM.; Díaz Santos, JR.; Lloret, J.; Romero Martínez, JO. (2019). MHCP: Multimedia Hybrid Cloud Computing Protocol and Architecture for Mobile Devices. IEEE Network. 33(1):106-112. https://doi.org/10.1109/MNET.2018.1300246S10611233

    Mobility Management in beyond 3G-Environments

    Get PDF
    Beyond 3G-environments are typically defined as environments that integrate different wireless and fixed access network technologies. In this paper, we address IP based Mobility Management (MM) in beyond 3G-environments with a focus on wireless access networks, motivated by the current trend of WiFi, GPRS, and UMTS networks. The GPRS and UMTS networks provide countrywide network access, while the WiFi networks provide network access in local areas such as city centres and airports. As a result, mobile end-users can be always on-line and connected to their preferred network(s), these network preferences are typically stored in a user profile. For example, an end-user who wishes to be connected with highest bandwidth could be connected to a WiFi network when available and fall back to GPRS when moving outside the hotspot area.\ud In this paper, we consider a combination of MM for legacy services (like web browsing, telnet, etc.) using Mobile IP and multimedia services using SIP. We assume that the end-user makes use of multi-interface terminals with the capability of selecting one or more types of access networks\ud based on preferences. For multimedia sessions, like VoIP or streaming video, we distinguish between changes in network access when the end-user is in a session or not in a session. If the end-user is not in a session, he or she needs to be able to start new sessions and receive invitations for new sessions. If the end-user is in a session, the session needs to be handed over to the new access network as seamless as possible from the perspective of the end-user. We propose an integrated but flexible solution to these problems that facilitates MM with a customizable transparency to applications and end-users

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    A Genetic Algorithm-based Framework for Soft Handoff Optimization in Wireless Networks

    Get PDF
    In this paper, a genetic algorithm (GA)-based approach is used to evaluate the probability of successful handoff in heterogeneous wireless networks (HWNs) so as to increase capacity and network performance. The traditional handoff schemes are prone to ping pong and corner effects and developing an optimized handoff scheme for seamless, faster, and less power consuming handoff decision is challenging. The GA scheme can effectively optimize soft handoff decision by selecting the best fit network for the mobile terminal (MT) considering quality of service (QoS) requirements, network parameters and user’s preference in terms of cost of different attachment points for the MT. The robustness and ability to determine global optima for any function using crossover and mutation operations makes GA a promising solution. The developed optimization framework was simulated in Matrix Laboratory (MATLAB) software using MATLAB’s optima tool and results show that an optimal MT attachment point is the one with the highest handoff success probability value which determines direction for successful handoff in HWN environment. The system maintained a 90%  with 4 channels and more while a 75% was obtained even at high traffic intensity
    corecore