1,715 research outputs found

    Advances In Internal Model Principle Control Theory

    Get PDF
    In this thesis, two advanced implementations of the internal model principle (IMP) are presented. The first is the identification of exponentially damped sinusoidal (EDS) signals with unknown parameters which are widely used to model audio signals. This application is developed in discrete time as a signal processing problem. An IMP based adaptive algorithm is developed for estimating two EDS parameters, the damping factor and frequency. The stability and convergence of this adaptive algorithm is analyzed based on a discrete time two time scale averaging theory. Simulation results demonstrate the identification performance of the proposed algorithm and verify its stability. The second advanced implementation of the IMP control theory is the rejection of disturbances consisting of both predictable and unpredictable components. An IMP controller is used for rejecting predictable disturbances. But the phase lag introduced by the IMP controller limits the rejection capability of the wideband disturbance controller, which is used for attenuating unpredictable disturbance, such as white noise. A combination of open and closed-loop control strategy is presented. In the closed-loop mode, both controllers are active. Once the tracking error is insignificant, the input to the IMP controller is disconnected while its output control action is maintained. In the open loop mode, the wideband disturbance controller is made more aggressive for attenuating white noise. Depending on the level of the tracking error, the input to the IMP controller is connected intermittently. Thus the system switches between open and closed-loop modes. A state feedback controller is designed as the wideband disturbance controller in this application. Two types of predictable disturbances are considered, constant and periodic. For a constant disturbance, an integral controller, the simplest IMP controller, is used. For a periodic disturbance with unknown frequencies, adaptive IMP controllers are used to estimate the frequencies before cancelling the disturbances. An extended multiple Lyapunov functions (MLF) theorem is developed for the stability analysis of this intermittent control strategy. Simulation results justify the optimal rejection performance of this switched control by comparing with two other traditional controllers

    Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems

    Get PDF
    This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal

    Integral MRAC with Minimal Controller Synthesis and bounded adaptive gains: The continuous-time case

    Get PDF
    Model reference adaptive controllers designed via the Minimal Control Synthesis (MCS) approach are a viable solution to control plants affected by parameter uncertainty, unmodelled dynamics, and disturbances. Despite its effectiveness to impose the required reference dynamics, an apparent drift of the adaptive gains, which can eventually lead to closed-loop instability or alter tracking performance, may occasionally be induced by external disturbances. This problem has been recently addressed for this class of adaptive algorithms in the discrete-time case and for square-integrable perturbations by using a parameter projection strategy [1]. In this paper we tackle systematically this issue for MCS continuous-time adaptive systems with integral action by enhancing the adaptive mechanism not only with a parameter projection method, but also embedding a s-modification strategy. The former is used to preserve convergence to zero of the tracking error when the disturbance is bounded and L2, while the latter guarantees global uniform ultimate boundedness under continuous L8 disturbances. In both cases, the proposed control schemes ensure boundedness of all the closed-loop signals. The strategies are numerically validated by considering systems subject to different kinds of disturbances. In addition, an electrical power circuit is used to show the applicability of the algorithms to engineering problems requiring a precise tracking of a reference profile over a long time range despite disturbances, unmodelled dynamics, and parameter uncertainty.Postprint (author's final draft

    Vibration suppression of the horizontal flexible plate using proportional– integral–derivative controller tuned by particle swarm optimization

    Get PDF
    This paper presents the development of an active vibration control for vibration suppression of the horizontal flexible plate structure using proportional–integral–derivative controller tuned by a conventional method via Ziegler–Nichols and an intelligent method known as particle swarm optimization algorithm. Initially, the experimental rig was designed and fabricated with all edges clamped at the horizontal position of the flexible plate. Data acquisition and instrumentation systems were designed and integrated into the experimental rig to collect input–output vibration data of the flexible plate. The vibration data obtained through experimental study was used to model the system using system identification technique based on auto-regressive with exogenous input structure. The plate system was modeled using particle swarm optimization algorithm and validated using mean squared error, one-step ahead prediction, and correlation tests. The stability of the model was assessed using pole zero diagram stability. The fitness function of particle swarm optimization algorithm is defined as the mean squared error between the measured and estimated output of the horizontal flexible plate system. Next, the developed model was used in the development of an active vibration control for vibration suppression on the horizontal flexible plate system using a proportional–integral–derivative controller. The proportional–integral–derivative gains are optimally determined using two different ways, the conventional method tuned by Ziegler–Nichols tuning rules and the intelligent method tuned by particle swarm optimization algorithm. The performances of developed controllers were assessed and validated. Proportional–integral–derivative-particle swarm optimization controller achieved the highest attenuation value for first mode of vibration by achieving 47.28 dB attenuation as compared to proportional–integral–derivative-Ziegler–Nichols controller which only achieved 34.21 dB attenuation

    Performance of the CGS six DOF Shaking Table on the Harmonic Signal Reproduction

    Get PDF
    Shaking table testing continues to play an important role in earthquake engineering research. It has been recognized as a powerful testing method to evaluate structural components and systems under realistic dynamic loads. Although it represents a very attractive experimental procedure, many technical challenges, which require attention and consideration, still remain. High fidelity in signal reproduction is the focus of the work presented in this paper. The main objective of this paper is to investigate the capabilities of adaptive control techniques based on Amplitude Phase Control (APC) and Adaptive Harmonic Cancellation (AHC) on the harmonic signal tracking performance of the shaking table. A series of 232 sinusoidal command waveforms with various frequencies and amplitudes were conducted on the shaking table of the laboratory of the National Earthquake Engineering Applied Research Center (CGS, Algeria). Experimental results are reported and recommendations on the use of these adaptive control techniques are discussed

    A parallel prefiltering approach for the identification of a biased sinusoidal signal: theory and experiments

    Get PDF
    The problem of estimating the amplitude, frequency, and phase of an unknown sinusoidal signal from a noisy-biased measurement is addressed in this paper by a family of parallel prefiltering schemes. The proposed methodology consists in using a pair of linear filters of specified order to generate a suitable number of auxiliary signals that are used to estimate\u2014in an adaptive way\u2014the frequency, the amplitude, and the phase of the sinusoid. Increasing the order of the prefilters improves the noise immunity of the estimator, at the cost of an increase of the computational complexity. Among the whole family of estimators realizable by varying the order of the filters, the simple parallel prefilters of orders 2 C 2 and 3 C 3 are discussed in detail, being the most attractive from the implementability point of view. The behavior of the two algorithms with respect to bounded external disturbances is characterized by input-to-state stability arguments. Finally, the effectiveness of the proposed technique is shown both by comparative numerical simulations and by a real experiment addressing the estimation of the frequency of the electrical mains from a noisy voltage measurement

    Asymptotic rejection of sinusoidal disturbances based voltage balance control in back-to-back power converters

    Get PDF
    This paper addresses the imbalance problem of the dc-link capacitor voltages in the three-level diode-clamped back-to-back power converter. In order to cope with it, a mathematical analysis of the capacitor voltage difference dynamics, based on a continuous model of the converter, is first carried out. It leads to an approximated model which contains explicitly several sinusoidal functions of time. In view of this result, the voltage imbalance phenomenon can be addressed as an output regulation problem, considering the sinusoidal functions as exogenous disturbances. Thus, a novel approach to deal with the mentioned problem in the back- to-back converter is presented. Then, the particular features of the disturbances are used to design several controllers. They all follow an asymptotic disturbance rejection approach. In this way, the estimations of the disturbances are used to apply a control law that cancels them while regulating the capacitor voltage balance as well. Finally, the performance of the proposed control laws is evaluated, presenting the simulation results obtained when the different controllers are implemented.MICINN-FEDER DPI2009-0966

    DISCRETE-TIME ADAPTIVE CONTROL ALGORITHMS FOR REJECTION OF SINUSOIDAL DISTURBANCES

    Get PDF
    We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies

    Doctor of Philosophy

    Get PDF
    dissertationThe dissertation is concerned with the development and analysis of adaptive algorithms for the rejection of unknown periodic disturbances acting on an unknown system. The rejection of periodic disturbances is a problem frequently encountered in control engineering, and in active noise and vibration control in particular. A new adaptive algorithm is presented for situations where the plant is unknown and may be time-varying. Known as the adaptive harmonic steady-state or ADHSS algorithm, the approach consists in obtaining on-line estimates of the plant frequency response and of the disturbance parameters. The estimates are used to continuously update control parameters and cancel or minimize the effect of the disturbance. The dynamic behavior of the algorithm is analyzed using averaging theory. Averaging theory allows the nonlinear time-varying closed-loop system to be approximated by a nonlinear time-invariant system. Extensions of the algorithm to systems with multiple inputs/outputs and disturbances consisting of multiple frequency components are provided. After considering the rejection of sinusoidal disturbances of known frequency, the rejection of disturbances of unknown frequency acting on an unknown and time-varying plant is considered. This involves the addition of frequency estimation to the ADHSS algorithm. It is shown that when magnitude phase-locked loop (MPLL) frequency estimation is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the frequency estimator and so that the order of the ADHSS can be reduced. While MPLL frequency estimation can be combined favorably with ADHSS disturbance rejection, stability is limited due to the local convergence properties of the MPLL. Thus, a new frequency estimation algorithm with semiglobal stability properties is introduced. Based on the theory of asynchronous electric machines, the induction motor frequency estimator, or IMFE, is shown to be appropriate for disturbance cancellation and, with modification, is shown to increase stability of the combined ADHSS/MPLL algorithm. Extensive active noise control experiments demonstrate the performance of the algorithms presented in the dissertation when disturbance and plant parameters are changing

    Fixed-gain/adaptive control for simultaneous rejection of broadband and sinusoidal disturbances

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76246/1/AIAA-2001-4095-990.pd
    corecore