417 research outputs found

    Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation

    Get PDF
    Nowadays, there is a remarkable world trend in employing UAVs and drones for diverse applications. The main reasons are that they may cost fractions of manned aircraft and avoid the exposure of human lives to risks. Nevertheless, they depend on positioning systems that may be vulnerable. Therefore, it is necessary to ensure that these systems are as accurate as possible, aiming to improve the navigation. In pursuit of this end, conventional Data Fusion techniques can be employed. However, its computational cost may be prohibitive due to the low payload of some UAVs. This paper proposes a Multisensor Data Fusion application based on Hybrid Adaptive Computational Intelligence - the cascaded use of Fuzzy C-Means Clustering (FCM) and Adaptive-Network-Based Fuzzy Inference System (ANFIS) algorithms - that have been shown able to improve the accuracy of current positioning estimation systems for real-time UAV autonomous navigation. In addition, the proposed methodology outperformed two other Computational Intelligence techniques

    Enhancing UAV Navigation in Dynamic Environments: A Detailed Integration of Fick's Law Algorithm for Optimal Pathfinding in Complex Terrains

    Get PDF
    In the realm of Unmanned Aerial Vehicles (UAVs), efficient navigation in complex environments is crucial, necessitating advanced pathfinding algorithms. This study introduces the Fick's Law Algorithm (FLA) for UAV path optimization, drawing inspiration from the principles of molecular diffusion, and positions it in the context of existing algorithms such as A* and Dijkstra's. Through a comparative analysis, we highlight FLA's unique approach and advantages in terms of computational efficiency and adaptability to dynamic obstacles. Our experiment, conducted in a simulated three-dimensional space with static and dynamic obstacles, involves an extensive quantitative analysis. FLA's performance is quantified through metrics like path length reduction, computation time, and obstacle avoidance efficacy, demonstrating a marked improvement over traditional methods. The technical foundation of FLA is detailed, emphasizing its iterative adaptation based on a cost function that accounts for path length and obstacle avoidance. The algorithm's rapid convergence towards an optimal solution is evidenced by a significant decrease in the cost function, supported by data from our convergence graph. Visualizations in both 2D and 3D effectively illustrate the UAV’s trajectory, highlighting FLA's efficiency in real-time path correction and obstacle negotiation. Furthermore, we discuss FLA's practical implications, outlining its adaptability in various real-world UAV applications, while also acknowledging its limitations and potential challenges. This exploration extends FLA's relevance beyond theoretical contexts, suggesting its efficacy in real-world scenarios. Looking ahead, future work will not only focus on enhancing FLA's computational efficiency but also on developing specific methodologies for real-world testing. These include adaptive scaling for different UAV models and environments, as well as integration with UAV hardware systems. Our study establishes FLA as a potent tool for autonomous UAV navigation, offering significant contributions to the field of dynamic path optimization

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation

    Kernel-based fault diagnosis of inertial sensors using analytical redundancy

    Get PDF
    Kernel methods are able to exploit high-dimensional spaces for representational advantage, while only operating implicitly in such spaces, thus incurring none of the computational cost of doing so. They appear to have the potential to advance the state of the art in control and signal processing applications and are increasingly seeing adoption across these domains. Applications of kernel methods to fault detection and isolation (FDI) have been reported, but few in aerospace research, though they offer a promising way to perform or enhance fault detection. It is mostly in process monitoring, in the chemical processing industry for example, that these techniques have found broader application. This research work explores the use of kernel-based solutions in model-based fault diagnosis for aerospace systems. Specifically, it investigates the application of these techniques to the detection and isolation of IMU/INS sensor faults – a canonical open problem in the aerospace field. Kernel PCA, a kernelised non-linear extension of the well-known principal component analysis (PCA) algorithm, is implemented to tackle IMU fault monitoring. An isolation scheme is extrapolated based on the strong duality known to exist between probably the most widely practiced method of FDI in the aerospace domain – the parity space technique – and linear principal component analysis. The algorithm, termed partial kernel PCA, benefits from the isolation properties of the parity space method as well as the non-linear approximation ability of kernel PCA. Further, a number of unscented non-linear filters for FDI are implemented, equipped with data-driven transition models based on Gaussian processes - a non-parametric Bayesian kernel method. A distributed estimation architecture is proposed, which besides fault diagnosis can contemporaneously perform sensor fusion. It also allows for decoupling faulty sensors from the navigation solution

    Data Fusion for Vision-Based Robotic Platform Navigation

    Get PDF
    Data fusion has become an active research topic in recent years. Growing computational performance has allowed the use of redundant sensors to measure a single phenomenon. While Bayesian fusion approaches are common in general applications, the computer vision community has largely relegated this approach. Most object following algorithms have gone towards pure machine learning fusion techniques that tend to lack flexibility. Consequently, a more general data fusion scheme is needed. The motivation for this work is to propose methods that allow for the development of simple and cost effective, yet robust visual following robots capable of tracking a general object with limited restrictions on target characteristics. With that purpose in mind, in this work, a hierarchical adaptive Bayesian fusion approach is proposed, which outperforms individual trackers by using redundant measurements. The adaptive framework is achieved by relying in each measurement\u27s local statistics and a global softened majority voting. Several approaches for robots that can follow targets have been proposed in recent years. However, many require the use of several, expensive sensors and often the majority of the image processing and other calculations are performed independently. In the proposed approach, objects are detected by several state-of-the-art vision-based tracking algorithms, which are then used within a Bayesian framework to filter and fuse the measurements and generate the robot control commands. Target scale variations and, in one of the platforms, a time-of-flight (ToF) depth camera, are used to determine the relative distance between the target and the robotic platforms. The algorithms are executed in real-time (approximately 30fps). The proposed approaches were validated in a simulated application and several robotics platforms: one stationary pan-tilt system, one small unmanned air vehicle, and one ground robot with a Jetson TK1 embedded computer. Experiments were conducted with different target objects in order to validate the system in scenarios including occlusions and various illumination conditions as well as to show how the data fusion improves the overall robustness of the system
    corecore