14 research outputs found

    Rate adaptive resource allocation with fairness control for OFDMA networks

    No full text
    The use of opportunistic radio resource allocation techniques in order to efficiently manage the resources generates a low fairness among the users in a cellular system due to uneven Quality of Service (QoS) distribution. Some classic rate adaptive policies tried to tackle this problem for OFDMA systems by proposing solutions to maximize capacity, maximize fairness, or find a static trade-off between these two objectives. This work generalizes these classic policies and propose a dynamic fairness/rate adaptive technique based on dynamic sub-carrier assignment and equal power allocation that considers a new fairness constraint in the optimization problem. By means of extensive system-level simulations, it is demonstrated that the proposed technique is able to provide an instantaneous (short-term) fairness control, which provides to the network operator the flexibility to operate on any desired trade-off point.Peer ReviewedPostprint (published version

    Feedback Subsampling in Temporally-Correlated Slowly-Fading Channels using Quantized CSI

    Get PDF
    This paper studies the problem of feedback subsampling in temporally-correlated wireless networks utilizing quantized channel state information (CSI). Under both peak and average power constraints, the system data transmission efficiency is studied in two scenarios. First, we focus on the case where the codewords span one fading block. In the second scenario, the throughput is determined for piecewise slowly-fading channels where the codewords are so long that a finite number of correlated gain realizations are experienced during each codeword transmission. Considering different temporal correlation conditions in both scenarios, substantial throughput increment is observed with feedback rates well below 1 bit per slot

    Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

    Get PDF
    Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design

    Contributions to Improve Cognitive Strategies with Respect to Wireless Coexistence

    Get PDF
    Cognitive radio (CR) can identify temporarily available opportunities in a shared radio environment to improve spectral efficiency and coexistence behavior of radio systems. It operates as a secondary user (SU) and accommodates itself in detected opportunities with an intention to avoid harmful collisions with coexisting primary user (PU) systems. Such opportunistic operation of a CR system requires efficient situational awareness and reliable decision making for radio resource allocation. Situational awareness includes sensing the environment followed by a hypothesis testing for detection of available opportunities in the coexisting environment. This process is often known as spectral hole detection. Situational knowledge can be further enriched by forecasting the primary activities in the radio environment using predictive modeling based approaches. Improved knowledge about the coexisting environment essentially means better decision making for secondary resource allocation. This dissertation identifies limitations of existing predictive modeling and spectral hole detection based resource allocation strategies and suggest improvements. Firstly, accurate and efficient estimation of statistical parameters of the radio environment is identified as a fundamental challenge to realize predictive modeling based cognitive approaches. Lots of useful training data which are essential to learn the system parameters are not available either because of environmental effects such as noise, interference and fading or because of limited system resources particularly sensor bandwidth. While handling environmental effects to improve signal reception in radio systems has already gained much attention, this dissertation addresses the problem of data losses caused by limited sensor bandwidth as it is totally ignored so far and presents bandwidth independent parameter estimation methods. Where, bandwidth independent means achieving the same level of estimation accuracy for any sensor bandwidth. Secondly, this dissertation argues that the existing hole detection strategies are dumb because they provide very little information about the coexisting environment. Decision making for resource allocation based on this dumb hole detection approach cannot optimally exploit the opportunities available in the coexisting environment. As a solution, an intelligent hole detection scheme is proposed which suggests classifying the primary systems and using the documented knowledge of identified radio technologies to fully understand their coexistence behavior. Finally, this dissertation presents a neuro-fuzzy signal classifier (NFSC) that uses bandwidth, operating frequency, pulse shape, hopping behavior and time behavior of signals as distinct features in order to xii identify the PU signals in coexisting environments. This classifier provides the foundation for bandwidth independent parameter estimation and intelligent hole detection. MATLAB/Simulink based simulations are used to support the arguments throughout in this dissertation. A proof-of-concept demonstrator using microcontroller and hardware defined radio (HDR) based transceiver is also presented at the end.</p
    corecore