34,560 research outputs found

    Hybrid agent-based and social force simulation for modelling human evacuation egress

    Get PDF
    Simulation has become one of the popular techniques to model evacuation scenarios. Simulation is used as an instrumental for examining human movement during both normal and emergencies such as evacuation. During an evacuation, people will be in a panic situation and egress behaviour that will find the way out from a dangerous place to a safe place. Two well-known techniques in simulation that can incorporate human behaviour inside the simulation models are Agent-Based Simulation and Social Force Simulation. ABS is using the concept of a multi-agent system that consists of decentralized agents which can be autonomous, responsive and proactive. Meanwhile, SFS is a physical force to drive humans dynamically to perform egress actions and human self-organised behaviour in a group. However, the main issue in modelling both ABS or SFS alone is due to their characteristic as ABS have difficulty in modelling the force element and collective behaviours while SFS does not focus on free movements during the evacuation. This behaviour was due to the structure of humans (agents) inside ABS is decentralized which resulting collision among agents and the desired formation of evacuation was not achieved. On the other hand, in a single SFS model, the human was not proactive in finding the way out which was not reflecting the actual behaviour of humans during the evacuation. Both ABS and SFS are potential techniques to be combined due to their characteristics of self-learning and free movement in ABS and self organization in SFS. The research methodology based on modelling and simulation (M&S) life-cycle has been utilized for this work; consists of three main phases, namely preliminary study, model development and validation and verification and finally the experimentation and the results analysis. The M&S life-cycle was utilized aligned with the research aim which is to investigate the performance of the combined ABS and SFS in modelling the egress behaviour during evacuation. To achieve the aim, five evacuation factors have been chosen namely obstacles, the number of exits, exit width, triggered alarm time, and the number of people that have been the most chosen factors in the literature review. Next, three simulation models (using techniques: SFS, ABS and hybrid ABS/SFS) have been developed, verified, and validated based on the real case study data. Various simulation scenarios that will influence the human evacuation movement based on the evacuation factors were modelled and analysed. The simulation results were compared based on the chosen performance measurement parameters (PMP): evacuation time, velocity, flow rate, density and simulation time (model execution time). The simulation results analysis revealed that SFS, ABS, and hybrid ABS/ SFS were found suitable to model evacuation egress (EE) based on the reported PMP. The smallest standard error (SSE) values reported 66% for hybrid ABS/ SFS, 17% for ABS and 17% for SFS where the highest percentage of SSE indicated the most accurate. Based on the experiment results, the hybrid ABS/ SFS revealed a better performance with high effectiveness and accuracy in the simulation model behaviour when modelling various evacuation egress scenarios compared to single ABS and SFS. Thus, hybrid ABS/ SFS was found the most appropriate technique for modelling EE as agents in the hybrid technique were communicating to each other by forming a decentralised control for smooth and safe EE movement. In addition, the impactful factors that affected the result accuracy were exits, the exit width (size), the obstacle and the number of people. Conclusively, this thesis contributed the hybrid ABS/ SFS model for modelling human behaviour during evacuation in a closed area such as an office building to the body of knowledge. Hence, this research was found significant to assist the practitioners and researchers to study the closer representation of human EE behaviour by considering the hybrid ABS/SFS model and the impactful factors of evacuation

    Collective modes of a trapped ion-dipole system

    Get PDF
    We study a simple model consisting of an atomic ion and a polar molecule trapped in a single setup, taking into consideration their electrostatic interaction. We determine analytically their collective modes of excitation as a function of their masses, trapping frequencies, distance, and the molecule's electric dipole moment. We then discuss the application of these collective excitations to cool molecules, to entangle molecules and ions, and to realize two-qubit gates between them. We finally present a numerical analysis of the possibility of applying these tools to study magnetically ordered phases of two-dimensional arrays of polar molecules, a setup proposed to quantum-simulate some strongly-correlated models of condensed matter.Comment: v2: 13 pages, 8 figures (from 10 figure files). Matches published version in Appl. Phys. B, special issue "Wolfgang Paul 100

    Application of Fuzzy control algorithms for electric vehicle antilock braking/traction control systems

    Get PDF
    Abstract—The application of fuzzy-based control strategies has recently gained enormous recognition as an approach for the rapid development of effective controllers for nonlinear time-variant systems. This paper describes the preliminary research and implementation of a fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking systems (ABSs). As the dynamics of the braking systems are highly nonlinear and time variant, fuzzy control offers potential as an important tool for development of robust traction control. Simulation studies are employed to derive an initial rule base that is then tested on an experimental test facility representing the dynamics of a braking system. The test facility is composed of an induction machine load operating in the generating region. It is shown that the torque-slip characteristics of an induction motor provides a convenient platform for simulating a variety of tire/road - driving conditions, negating the initial requirement for skid-pan trials when developing algorithms. The fuzzy membership functions were subsequently refined by analysis of the data acquired from the test facility while simulating operation at a high coefficient of friction. The robustness of the fuzzy-logic slip regulator is further tested by applying the resulting controller over a wide range of operating conditions. The results indicate that ABS/traction control may substantially improve longitudinal performance and offer significant potential for optimal control of driven wheels, especially under icy conditions where classical ABS/traction control schemes are constrained to operate very conservatively

    Realtime State Estimation with Tactile and Visual sensing. Application to Planar Manipulation

    Full text link
    Accurate and robust object state estimation enables successful object manipulation. Visual sensing is widely used to estimate object poses. However, in a cluttered scene or in a tight workspace, the robot's end-effector often occludes the object from the visual sensor. The robot then loses visual feedback and must fall back on open-loop execution. In this paper, we integrate both tactile and visual input using a framework for solving the SLAM problem, incremental smoothing and mapping (iSAM), to provide a fast and flexible solution. Visual sensing provides global pose information but is noisy in general, whereas contact sensing is local, but its measurements are more accurate relative to the end-effector. By combining them, we aim to exploit their advantages and overcome their limitations. We explore the technique in the context of a pusher-slider system. We adapt iSAM's measurement cost and motion cost to the pushing scenario, and use an instrumented setup to evaluate the estimation quality with different object shapes, on different surface materials, and under different contact modes

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien
    • …
    corecore