92 research outputs found

    Development Of An Improved Microwave Ocean Surface Emissivity Radiative Transfer Model

    Get PDF
    An electromagnetic model is developed for predicting the microwave blackbody emission from the ocean surface over a wide range of frequencies, incidence angles, and wind vector (speed and direction) for both horizontal and vertical polarizations. This ocean surface emissivity model is intended to be incorporated into an oceanic radiative transfer model to be used for microwave radiometric applications including geophysical retrievals over oceans. The model development is based on a collection of published ocean emissivity measurements obtained from satellites, aircraft, field experiments, and laboratory measurements. This dissertation presents the details of methods used in the ocean surface emissivity model development and comparisons with current emissivity models and aircraft radiometric measurements in hurricanes. Especially, this empirically derived ocean emissivity model relates changes in vertical and horizontal polarized ocean microwave brightness temperature measurements over a wide range of observation frequencies and incidence angles to physical roughness changes in the ocean surface, which are the result of the air/sea interaction with surface winds. Of primary importance are the Stepped Frequency Microwave Radiometer (SFMR) brightness temperature measurements from hurricane flights and independent measurements of surface wind speed that are used to define empirical relationships between C-band (4 - 7 GHz) microwave brightness temperature and surface wind speed. By employing statistical regression techniques, we develop a physical-based ocean emissivity model with empirical coefficients that depends on geophysical parameters, such as wind speed, wind direction, sea surface temperature, and observational parameters, such as electromagnetic frequency, electromagnetic polarization, and incidence angle

    An Ocean Surface Wind Vector Model Function For A Spaceborne Microwave Radiometer And Its Application

    Get PDF
    Ocean surface wind vectors over the ocean present vital information for scientists and forecasters in their attempt to understand the Earth\u27s global weather and climate. As the demand for global wind velocity information has increased, the number of satellite missions that carry wind-measuring sensors has also increased; however, there are still not sufficient numbers of instruments in orbit today to fulfill the need for operational meteorological and scientific wind vector data. Over the last three decades operational measurements of global ocean wind speeds have been obtained from passive microwave radiometers. Also, vector ocean surface wind data were primarily obtained from several scatterometry missions that have flown since the early 1990\u27s. However, other than SeaSat-A in 1978, there has not been combined active and passive wind measurements on the same satellite until the launch of the second Advanced Earth Observing Satellite (ADEOS-II) in 2002. This mission has provided a unique data set of coincident measurements between the SeaWinds scatterometer and the Advanced Microwave Scanning Radiometer (AMSR). AMSR observes the vertical and horizontal brightness temperature (TB) at six frequency bands between 6.9 GHz and 89.0 GHz. Although these measurements contain some wind direction information, the overlying atmospheric influence can easily obscure this signal and make wind direction retrieval from passive microwave measurements very difficult. However, at radiometer frequencies between 10 and 37 GHz, a certain linear combination of vertical and horizontal brightness temperatures causes the atmospheric dependence to be nearly cancelled and surface parameters such as wind speed, wind direction and sea surface temperature to dominate the resulting signal. This brightness temperature combination may be expressed as ATBV-TBH, where A is a constant to be determined and the TBV and TBH are the brightness temperatures for the vertical and horizontal polarization respectively. In this dissertation, an empirical relationship between the AMSR\u27s ATBV-TBH and SeaWinds\u27 surface wind vector retrievals was established for three microwave frequencies: 10, 18 and 37 GHz. This newly developed model function for a passive microwave radiometer could provide the basis for wind vector retrievals either separately or in combination with scatterometer measurements

    Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward)

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 5244–5269, doi:10.1002/2013JC009648.A high-resolution global daily analysis of ocean surface vector winds (1987 onward) was developed by the Objectively Analyzed air-sea Fluxes (OAFlux) project. This study addressed the issues related to the development of the time series through objective synthesis of 12 satellite sensors (two scatterometers and 10 passive microwave radiometers) using a least-variance linear statistical estimation. The issues include the rationale that supports the multisensor synthesis, the methodology and strategy that were developed, the challenges that were encountered, and the comparison of the synthesized daily mean fields with reference to scatterometers and atmospheric reanalyses. The synthesis was established on the bases that the low and moderate winds (<15 m s−1) constitute 98% of global daily wind fields, and they are the range of winds that are retrieved with best quality and consistency by both scatterometers and radiometers. Yet, challenges are presented in situations of synoptic weather systems due mainly to three factors: (i) the lack of radiometer retrievals in rain conditions, (ii) the inability to fill in the data voids caused by eliminating rain-flagged QuikSCAT wind vector cells, and (iii) the persistent differences between QuikSCAT and ASCAT high winds. The study showed that the daily mean surface winds can be confidently constructed from merging scatterometers with radiometers over the global oceans, except for the regions influenced by synoptic weather storms. The uncertainties in present scatterometer and radiometer observations under high winds and rain conditions lead to uncertainties in the synthesized synoptic structures.The project is sponsored by the NASA Ocean Vector Wind Science Team (OVWST) activities under grant NNA10AO86G.2015-02-1

    Selected Tropical Cyclone Satellite Analyses with an Emphasis on 37 GHz Color Composite Imagery

    Get PDF
    This research expanded the understanding of the 37 GHz color composite imagery of tropical cyclones (using the Naval Research Lab Monterey image archive), by improved identification of precipitation types uniquely observed on this imagery, aided by creation of a conceptual model. This model distinguished between stratiform and convective rain, and identified the cyan color on this imagery as being warm rain from shallow and moderate convection, or SAM. Patterns of SAM on this imagery uniquely identify tropical cyclone features: an early indicator of the onset of rapid intensification and early eyewall replacement cycles, both previously unobserved. These are identified by early eye development of a symmetric shallow convective ring now understood to be a SAM ring. A forecast methodology created for the RI indicator was introduced globally to Regional Specialized Meteorological Centers. It has been suggested that this contributed to some improvement in NHC intensity forecasts in the past decade. The 37color imagery also depicts precipitation patterns of sheared tropical cyclones, subtropical cyclones, monsoon trough development and intense tropical cyclones, and is used to develop a supplement to the Dvorak current intensity technique. The need for a passive microwave repository based on the tropical cyclone life cycle is identified. The Hurricane Camille reanalysis is presented, with additional material including an explanation for the unusual sea state contributing to the original HURDAT landfall intensity

    Inter-satellite Microwave Radiometer Calibration

    Get PDF
    The removal of systematic brightness temperature (Tb) biases is necessary when producing decadal passive microwave data sets for weather and climate research. It is crucial to achieve Tb measurement consistency among all satellites in a constellation as well as to maintain sustained calibration accuracy over the lifetime of each satellite sensor. In-orbit inter-satellite radiometric calibration techniques provide a long term, group-wise solution; however, since radiometers operate at different frequencies and viewing angles, Tb normalizations are made before making intermediate comparisons of their near-simultaneous measurements. In this dissertation, a new approach is investigated to perform these normalizations from one satellite\u27s measurements to another. It uses Taylor\u27s series expansion around a source frequency to predict Tb of a desired frequency. The relationship between Tb\u27s and frequencies are derived from simulations using an oceanic Radiative Transfer Model (RTM) over a wide variety of environmental conditions. The original RTM is built on oceanic radiative transfer theory. Refinements are made to the model by modifying and tuning algorithms for calculating sea surface emission, atmospheric emission and attenuations. Validations were performed with collocated WindSat measurements. This radiometric calibration approach is applied to establish an absolute brightness temperature reference using near-simultaneous pair-wise comparisons between a non-sun synchronous radiometer and two sun-synchronous polar-orbiting radiometers: the Tropical Rain Measurement Mission (TRMM) Microwave Imager (TMI), WindSat (on Coriolis) and Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing System -II (ADEOSII), respectively. Collocated measurements between WindSat and TMI as well as between AMSR and TMI, within selected 10 weeks in 2003 for each pair, are collected, filtered and applied in the cross calibration. AMSR is calibrated to WindSat using TMI as a transfer standard. Accuracy prediction and error source analysis are discussed along with calibration results. This inter-satellite radiometric calibration approach provides technical support for NASA\u27s Global Precipitation Mission which relies on a constellation of cooperative satellites with a variety of microwave radiometers to make global rainfall measurements

    IMPROVED SATELLITE MICROWAVE RETRIEVALS AND THEIR INCORPORATION INTO A SIMPLIFIED 4D-VAR VORTEX INITIALIZATION USING ADJOINT TECHNIQUES

    Get PDF
    Microwave instruments provide unique radiance measurements for observing surface properties and vertical atmosphere profiles in almost all weather conditions except for heavy precipitation. The Advanced Microwave Scanning Radiometer 2 (AMSR2) observes radiation emitted by Earth at window channels, which helps to retrieve surface and column integrated geophysical variables. However, observations at some X- and K-band channels are susceptible to interference by television signals transmitted from geostationary satellites when AMSR2 is scanning regions including the U.S. and Europe, which is referred to as Television Frequency Interference (TFI). It is found that high reflectivity over the ocean surface is favorable for the television signals to be reflected back to space. When the angle between the Earth scene vector and the reflected signal vector is small enough, the reflected TV signals will enter AMSR2’s antenna. As a consequence, TFI will introduce erroneous information to retrieved geophysical products if not detected. This study proposes a TFI correction algorithm for observations over ocean. Microwave imagers are mostly for observing surface or column-integrated properties. In order to have vertical temperature profiles of the atmosphere, a study focusing on the Advanced Technology Microwave Sounder (ATMS) is included. A traditional AMSU-A temperature retrieval algorithm is modified to remove the scan biases in the temperature retrieval and to include only those ATMS sounding channels that are correlated with the atmospheric temperatures on the pressure level of the retrieval. The warm core structures derived for Hurricane Sandy when it moved from the tropics to the mid-latitudes are examined. Significant improvements have been obtained for the forecasts of hurricane track, but not intensity, especially during the first 6-12 hours. In this study, a simplified four-dimensional variational (4D-Var) vortex initialization model is developed to assimilate the geophysical products retrieved from the observations of both microwave imagers and microwave temperature sounders. The goal is to generate more realistic initial vortices than the bogus vortices currently incorporated in the Hurricane Weather Research and Forecasting (HWRF) model in order to improve hurricane intensity forecasts. The case included in this study is Hurricane Gaston (2016). The numerical results show that the satellite geophysical products have a desirable impact on the structure of the initialized vortex

    Buoy perspective of a high-resolution global ocean vector wind analysis constructed from passive radiometers and active scatterometers (1987–present)

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C11013, doi:10.1029/2012JC008069.The study used 126 buoy time series as a benchmark to evaluate a satellite-based daily, 0.25-degree gridded global ocean surface vector wind analysis developed by the Objectively Analyzed airs-sea Fluxes (OAFlux) project. The OAFlux winds were produced from synthesizing wind speed and direction retrievals from 12 sensors acquired during the satellite era from July 1987 onward. The 12 sensors included scatterometers (QuikSCAT and ASCAT), passive microwave radiometers (AMSRE, SSMI and SSMIS series), and the passive polarimetric microwave radiometer from WindSat. Accuracy and consistency of the OAFlux time series are the key issues examined here. A total of 168,836 daily buoy measurements were assembled from 126 buoys, including both active and archive sites deployed during 1988–2010. With 106 buoys from the tropical array network, the buoy winds are a good reference for wind speeds in low and mid-range. The buoy comparison shows that OAFlux wind speed has a mean difference of −0.13 ms−1 and an RMS difference of 0.71 ms−1, and wind direction has a mean difference of −0.55 degree and an RMS difference of 17 degrees. Vector correlation of OAFlux and buoy winds is of 0.9 and higher over almost all the sites. Influence of surface currents on the OAFlux/buoy mean difference pattern is displayed in the tropical Pacific, with higher (lower) OAFlux wind speed in regions where wind and current have the opposite (same) sign. Improved representation of daily wind variability by the OAFlux synthesis is suggested, and a decadal signal in global wind speed is evident.The authors are grateful for the support of the NASA Ocean Vector Wind Science Team (OVWST) under grant NNA10AO86G during the five-year development of the OAFlux wind synthesis products. Support from the NOAA Office of Climate Observation (OCO) under grant NA09OAR4320129 in establishing and maintaining the buoy validation database for surface fluxes is gratefully acknowledged.2013-05-1

    Spaceborne Microwave Radiometry: Calibration, Intercalibration, and Science Applications.

    Full text link
    Spaceborne microwave radiometry is the backbone for assimilation into numerical weather forecasts and provides important information for Earth and environment science. The extensive radiometric data must go through the process of calibration and intercalibration prior to science application. This work deals with the entire process by providing systematic methods and addressing critical challenges. These methods have been applied to NASA and JAXA’s Global Precipitation Measurement (GPM) mission and many other radiometers to make important contributions and to solve long-standing issues with coastal science applications. Specifically, it addresses four important challenges: 1) improving cold calibration with scan dependent characterization; 2) reducing the uncertainty of warm calibration; 3) deriving calibration dependence across the full range of brightness temperatures with both cold and warm calibration; and 4) investigating calibration variability and dependence on geophysical parameters. One critical challenge in science applications of radiometer data is that coastal science products from radiometers have previously been largely unavailable due to land contamination. We therefore develop methods to correct for land contamination and derive coastal science products. This thesis addresses these challenges by developing their solutions and then applying them to the GPM mission and its radiometer constellation.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120728/1/johnxun_1.pd

    Half a century of satellite remote sensing of sea-surface temperature

    Get PDF
    Sea-surface temperature (SST) was one of the first ocean variables to be studied from earth observation satellites. Pioneering images from infrared scanning radiometers revealed the complexity of the surface temperature fields, but these were derived from radiance measurements at orbital heights and included the effects of the intervening atmosphere. Corrections for the effects of the atmosphere to make quantitative estimates of the SST became possible when radiometers with multiple infrared channels were deployed in 1979. At the same time, imaging microwave radiometers with SST capabilities were also flown. Since then, SST has been derived from infrared and microwave radiometers on polar orbiting satellites and from infrared radiometers on geostationary spacecraft. As the performances of satellite radiometers and SST retrieval algorithms improved, accurate, global, high resolution, frequently sampled SST fields became fundamental to many research and operational activities. Here we provide an overview of the physics of the derivation of SST and the history of the development of satellite instruments over half a century. As demonstrated accuracies increased, they stimulated scientific research into the oceans, the coupled ocean-atmosphere system and the climate. We provide brief overviews of the development of some applications, including the feasibility of generating Climate Data Records. We summarize the important role of the Group for High Resolution SST (GHRSST) in providing a forum for scientists and operational practitioners to discuss problems and results, and to help coordinate activities world-wide, including alignment of data formatting and protocols and research. The challenges of burgeoning data volumes, data distribution and analysis have benefited from simultaneous progress in computing power, high capacity storage, and communications over the Internet, so we summarize the development and current capabilities of data archives. We conclude with an outlook of developments anticipated in the next decade or so
    • …
    corecore