157 research outputs found

    Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis

    Get PDF
    This paper presents an investigation on the humidity sensitivity of deposited multi-walled carbon nanotube (MWCNT) networks using ac dielectrophoresis (DEP) between interdigitated electrodes (IDEs). MWCNTs dispersed in ethanol were trapped and enriched between IDEs on a Si/SiO2 substrate under a positive DEP force. After the DEP process, the ethanol was evaporated and the MWCNT network on a substrate with IDEs was put into a furnace for repeated thermal annealing. It was found that the resistance stability of the network was effectively improved through thermal annealing. The humidity sensitivity was obtained by measuring the resistance of the MWCNT network with different relative humidity at room temperature. The experimental results show the resistance increases linearly with increasing the relative humidity from 25% to 95% RH with a sensitivity of 0.5%/%RH. The MWCNT networks have a reversible humidity sensing capacity with response time and recovery time of about 3 s and 25 s, respectively. The resistance is dependent on temperature with a negative coefficient of about −0.33%/K in a temperature range from 293 K to 393 K

    Dielectrophoretic assembly of carbon nanotube devices

    Get PDF

    Single-Walled Carbon Nanotube Network Gas Sensor

    Get PDF

    Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor

    Get PDF
    Single-walled carbon nanotube network field effect transistors were fabricated and studied as humidity sensors. Sensing responses were altered by changing the gate voltage. At the open channel state (negative gate voltage), humidity pulse resulted in the decrease of the source-drain current, and, vice versa, the increase in the source-drain current was observed at the positive gate voltage. This effect was explained by the electron-donating nature of water molecules. The operation speed and signal intensity was found to be dependent on the gate voltage polarity. The positive or negative change in current with humidity pulse at zero-gate voltage was found to depend on the previous state of the gate electrode (positive or negative voltage, respectively). Those characteristics were explained by the charge traps in the gate dielectric altering the effective gate voltage, which influenced the operation of field effect transistor.Peer reviewe

    High Sensitivity Carbon Nanotubes Flow-Rate Sensors and Their Performance Improvement by Coating

    Get PDF
    A new type of hot-wire flow-rate sensor (HWFS) with a sensing element made of a macro-sized carbon nanotube (CNT) strand is presented in this study. An effective way to improve repeatability of the CNT flow-rate sensor by coating a layer of Al2O3 on the CNT surface is proposed. Experimental results show that due to the large surface-to-volume ratio and thin coated Al2O3 layer, the CNT flow-rate sensor has higher sensitivity and faster response than a conventional platinum (Pt) HWFS. It is also demonstrated that the covered CNT flow-rate sensor has better repeatability than its bare counterpart due to insulation from the surrounding environment. The proposed CNT flow-rate sensor shows application potential for high-sensitivity measurement of flow rate

    Carbon nanotubes as fire gas sensors

    No full text
    Multi walled carbon nanotubes (MWCNTs) possess properties that make them particularly relevant for sensing applications in both the gas and liquid phase. This study presents an evaluation of cheap readily available CVD grown MWCNTs for use as fire gas sensors. Current fire detectors exploit heat and smoke detectors and it is hoped that the inclusion of gas detectors will increase the speed and reliability of detection. In order to prepare a variety of different MWCNTs a range of CVD synthesis were employed including an injected catalyst method where MWCNTs grew in dense mats from quartz substrates, MWCNTs were also synthesised using a sputtered Fe catalyst layer with acetylene as the carbon source which enabled control over the positioning of the growth. In each case, the growth parameters were varied until aligned growth was achieved. Doping of MWCNTs was also carried out as this may enhance and enable some control over the electrical properties of the CNTs; nitrogen was also added as a dopant by including 1,4-diazine as a precursor, and the effects on morphology of the MWCNTs produced were studied. The chemistry of the surface is also known to affect the sensing properties of CNTs. A batch of MWCNTs produced via the injected catalyst method were purifed by acid reflux, base washing and high temperature vacuum annealing, then modified with platinum or palladium metal nanoparticles via a reduction of the metal salts under hydrogen. MWCNTs were also coated with the polymer polyethyleneimine and with copperphthalocyanine. Prototype sensor devices were fabricated by electrophoretic deposition of these modified MWCNTs, and gas testing was carried out with the gases NO2, NH3, CO, H2 and C3H6. The mechanisms of sensing were investigated by repeating the tests at different temperatures, which revealed which sensing mechanisms were dominant and responses were compared between the differently modified MWCNTs. Sensor response was also investigated with a series of vapours to probe the dispersive and polar interactions on the MWCNT walls

    Integration of Biomolecular Recognition Elements with Solid-State Devices

    Get PDF
    Continued advances in stand-alone chemical sensors requires the introduction of new materials and transducers, and the seamless integration of the two. Electronic sensors represent one of the most efficient and versatile sensing transducers that offer advantages of high sensitivity, compatibility with multiple types of materials, network connectivity, and capability of miniaturization. With respect to materials to be used on this platform, many classes and subclasses of materials, including polymers, oxides, semiconductors, and composites have been investigated for various sensing environments. Despite numerous commercial products, major challenges remain. These include enhancing materials for selectivity/specificity, and low cost integration/ miniaturization of devices. Breakthroughs in either area would signify a transformative innovation. In this thesis, a combined materials and devices approach has been explored to address the above challenges. Biomolecular recognition elements, exemplified by aptamers, are the most recent addition to the library of tunable materials for specific detection of analytes. At the same time, nanoscale electrical devices based on tunnel junctions offer the potential for simple design, large scale integration, field deployment, network connectivity, and importantly, miniaturization to the molecular scale. To first establish a framework for studying sorption properties of solid oligonucleotides, custom designed aptamers sequences were studied to determine equilibrium partition coefficients. Linear-solvation-energy-relationship (LSER) analysis provides quantifications of non-covalent bonding properties and reveals the dominance of hydrogen bonding basicity in oligonucleotides. We find that DNA-analyte interactions have selective sorption properties similar to synthetic polymers. LSER analysis provides a chemical basis for material-analyte interactions. Oligonucleotide sequences were integrated with gold nanoparticle chemiresistors to transfer the selective sorption properties to microfabricated electrical devices. Responses generated by oligonucleotides under dry conditions were similar to standard organic mediums used as capping agents and suggests that DNA-based chemiresistor sensors operate with a similar mechanism based on sorption induced swelling. The equilibrium mass-sorption behavior of bulk DNA films could be translated to the chemiresistor sensitivity profiles. Our work establishes oligonucleotides, including aptamers, as a class of sorptive materials that can be systematically studied, engineered, and integrated with nanoscale electronic sensor devices. Experiments to investigate secondary structure effects were inconclusive and we conclude that further work should investigate DNA aptamers in buffered, aqueous environments to unequivocally establish the ability of chemiresitors to signal molecular recognition. Concurrent with the above studies, device integration and miniaturization was investigated to combine many sensing materials into a single, compact design. Arrays of nanoscale chemiresistors with critical features on the order of 10 – 100 nm were developed, using dielectrophoretic assembly of gold nanoparticles to control placement of the sensing material with nanometer accuracy. The nanoscale chemiresistors achieved the smallest known gold nanoparticle chemiresistors relying on just 2 – 3 layers of nanoparticles within 50 nm gaps, and were found to be more robust and less dependent on film thickness than previously published designs. Due to shorter diffusion paths, the sensors are also faster in response and recovery. A proof-of-concept, integrated single-chip sensor array was created and it showed similar response patterns as non-integrated sensor arrays. Dielectrophoresis is established as a key enabler for nanoscale, integrated devices. Based on the major findings of the thesis work, additional investigations were initiated to investigate the potential for nanoscale chemiresitor sensors to operate in buffered, aqueous (liquid) flow cells. Preliminary experiments show that chemiresistor sensing is transferable to liquid environments where analyte molecules are observed to partition from the bulk liquid to the sensing materials, leading to a detectable change of the device electrical properties. Comparing micron- and nano-scale devices fabricated using aqueous oligonucleotide-functionalized gold nanoparticles, it was found that nanoscale chemiresistors are more resistant to solvent damage than 5 µm chemiresistors. We conclude that future experiments to investigate aptamer sensing in aqueous solutions is a promising direction. Overall, this thesis is a significant contribution to materials development and device design to attain improved sensor selectivity and higher levels of device integration. First, it offers a scheme for design, selection, and validation of materials that confer analyte-specific interactions. Second, it paves the way for large scale sensor integration and parallel operation on a single chip. Lastly, it offers an approach to combine biomolecular recognition elements with electronic devices into robust, nanoscale detection systems. Based on the major findings of the thesis work, additional investigations were initiated to investigate the potential for nanoscale chemiresitor sensors to operate in buffered, aqueous (liquid) flow cells. Preliminary experiments show that chemiresistor sensing is transferable to liquid environments where analyte molecules are observed to partition from the bulk liquid to the sensing materials, leading to a detectable change of the device electrical properties. Comparing micron- and nano-scale devices fabricated using aqueous oligonucleotide-functionalized gold nanoparticles, it was found that nanoscale chemiresistors are more resistant to solvent damage than 5 µm chemiresistors. We conclude that future experiments to investigate aptamer sensing in aqueous solutions is a promising direction. Overall, this thesis is a significant contribution to materials development and device design to attain improved sensor selectivity and higher levels of device integration. First, it offers a scheme for design, selection, and validation of materials that confer analyte-specific interactions. Second, it paves the way for large scale sensor integration and parallel operation on a single chip. Lastly, it offers an approach to combine biomolecular recognition elements with electronic devices into robust, nanoscale detection systems

    The Use of Graphene and its Derivatives in Chemical and Biological Sensing

    Get PDF
    Abstract A chemical sensor is defined as a transducer comprised of, or coated with, a layer that responds to changes in its local chemical environment. Chemical sensors convert various forms of energy into a measurable signal. For instance, the chemical energy involved with bonds breaking or forming can change the electronic properties of the transducer, creating an observable signal such as an increase or decrease in electrical resistance. Chemical sensing is important in many facets of research including environmental, bio-medical/pharmaceutical, industrial, automotive, and human safety. For a sensor to be practical it must interact preferentially with the target chemical analyte. A sensor should be precise, accurate, robust, cost efficient to manufacture, low in power consumption, portable otherwise the sensor is undesirable. Another key value of chemical sensors is it must exhibit rapid detection. Prior to portable sensors chemical analysis was performed in a laboratory on large, expensive instruments, which is costly in time, equipment fees, and personnel wages to operate. These sophisticated instruments are accurate and precise, however, it is far more beneficial to have a miniature, on-site detection apparatus. The first environmental, on-site sensor was used by the mining industry to monitor subterranean air quality; the canary. Carbon monoxide and methane (colorless, odorless gases) are large iv problems in the mining industry; smaller life forms are more susceptible to being poisoned by toxic gases. Today sensor constructs are far different from that of a canary, however, they serve the same purpose. Carbon nanomaterials such as graphene and single-walled carbon nanotubes and other derivatives prove to be of great importance in sensor research due to their unique electronic properties, and they’re high aspect ratio allowing them to be highly sensitive to small perturbations in local electronic environments

    Fabrication and characterisation of carbon-based devices

    Get PDF
    Thin film material properties and measurement characterisation techniques are crucial for the development of micro-electromechanical systems (MEMS) devices. Furthermore, as the technology scales down from microtechnology towards nanotechnology, nanoscale materials such as carbon nanotubes (CNTs) are required in electronic devices to overcome the limitations encountered by conventional materials at the nanoscale. The integration of CNTs into micro-electronics and material applications is expected to provide a wide range of new applications. The work presented in this thesis has contributed to the development of thin film material characterisation through research on the thermal conductivity measurement and the control of the residual stress of thin film materials used commonly in MEMS devices. In addition, the use of CNTs in micro-electronics and as filler reinforcement in composite materials applications have been investigated, leading to low resistivity CNTs interconnects and CNTs-Polyimide (PI) composites based resistive humidity sensors. In the first part of this thesis, the thermal conductivity of conductive thin films as well as the control of the residual stress arising from fabrication process in PI micro-cantilevers have been studied. A MEMS device has been developed for the thermal conductivity characterisation of conductive thin films showing good agreement with thermal conductivity of bulk material. Low energy Ar+ ion bombardment in a plasma has been used to control the residual stress present in PI cantilevers. Appropriate ion energy and exposure time have led to stress relaxation of the beams resulting in a straight PI cantilever beam. In the second part of this thesis, low resistivity CNTs interconnects have been developed using both dielectrophoresis (DEP) and Focused Ion Beam (FIB) techniques. An investigation of the effects of CNT concentration, applied voltage and frequency on the CNTs alignment between Al and Ti electrodes has resulted in the lowering of the CNTs’ resistance. The deposition of Pt contact using FIB at the CNTs-metal electrodes interface has been found to decrease the high contact resistances of the devices by four and two orders of magnitude for Al and Ti electrodes respectively. The last part of this thesis focuses on the preparation of CNTs-PI composite materials, its characterisation and its application as resistive humidity sensor. The integration of CNTs inside the PI matrix has resulted in enhancing significantly the electrical and mechanical properties of the composites. In particular, a DEP technique employed to induce CNTs alignment inside the PI matrix during curing has been attributed to play an important role in improving the composite properties and lowering the percolation threshold. In addition, the fabrication and testing of CNTs-PI resistive humidity sensors have been carried out. The sensing performance of the devices have shown to be dependent highly on the CNT concentration. Finally, the alignment of CNTs by DEP has improved the sensing properties of CNTs-PI humidity sensors and confirmed that the change of resistance in response to humidity is governed by the change of the CNTs’ resistances due to charge transfer from the water molecules to the CNTs
    • …
    corecore