7 research outputs found

    Ordered Micro-/Nanostructure Based Humidity Sensor for Fuel Cell Application

    Get PDF
    Humidity sensors are one of the most widely used sensors in commercial and industrial applications for environmental monitoring and controlling. Although related technology have been studied intensively, humidity sensing in harsh environments still remains a challenge. The inability of current humidity sensors to operate in high temperature environments is generally due to the degradation of the sensing films caused by high temperature, high humidity level, and/or contamination. Our goal is the design and fabrication of a humidity sensor that is capable of working under high temperatures and in a condensing environment. The targeted application of this sensor is in the polymer electrolyte membrane (PEM) fuel cell, where humidity control is crucial for performance optimization. In this work, ordered macroporous silicon is thoroughly studied as a humidity sensing layer. In addition to the advantages of traditional porous silicon for gas sensing (high resistance to high temperature and good compatibility with current IC fabrication process), the ordered macroporous silicon used in these experiment has uniform pore size, pore shape and distribution. All the vertical aligned pores can be opened to the environment at both ends, which can significantly increase the efficiency of gas diffusion and adsorption. Moreover, this special structure opens the door to uniform surface modifications for sensing enhancement. Both ordered macroporous silicon based heterostructure and self-supporting membrane are fabricated and investigated as a humidity sensor. Heterostructure sensors with different thin film surface coatings including bare Si, thermally grown SiO2, atom layer deposited ZnO, HfO2, and Ta2O5 are characterized. Post micro-fabrication is achieved on this ordered porous structure without affecting the material and its sensing properties. It has been proven that the ordered macroporous silicon with Ta2O5 surface coating shows the best sensing property due to its ultra-hydrophilic surface. The sensor shows high sensitivity, fast response times, small hysteresis, and extraordinary stability and repeatability under high temperatures and in condensing environment. It demonstrates great potential and advantages over existing commercial humidity sensors in the fuel cell application field. In addition to ordered macroporous silicon, well aligned 1D ZnO nanorods/nanowires -another widely used nanostructure in gas sensing- is also investigated as humidity sensing materials. Both vertically and laterally aligned nanorods/nanowires are fabricated and tested against humidity changes. The sensors shows increasing resistance to increasing relative humidity, which is contrary to most published works so far. Possible mechanisms have been proposed in this thesis and future work has been suggested for further study. To the best of our knowledge, this work is the first to use ordered macroporous silicon and well aligned 1D ZnO nanorods/nanowires for humidity sensing

    Electrochemical kinetics and sensing of conjugated dienes in acetonitrile

    Get PDF
    >Magister Scientiae - MScThis thesis focuses on the electroanalysis of some dienes (2-methyl-1.3-butadiene (MBD), tran-1.3-pentadiene (PD), 1.3-cyclohexadiene (CHD) and 3-cyclooctadiene (COD)) found in gasoline and the development of simple electrochemical diene sensors. The detection of dienes in fuels is important as they readily polymerise and form gum in fuel tanks. The electroctivity of the dienes was studied with glassy carbon electrode (GCE) and Pt electrode in tetrabutylammonium perchlorate (TBAP)/acetonitrile solution. Polyaniline-polystyrene sulfonic acid (PANi-PSSA) composite films were electro-deposited or drop-coated on GCE, with and without gold nanoparticles (AuNPs) and characterized by cyclic voltammetry (CV), high resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-vis) spectroscopy. Both composite polymers were found to be of nanofibral structure, and the spherical gold nanoparticles were dispersed uniformly within the polymer. The dienes exhibited no redox peaks on GCE/PANi-PSSA and GCE/PANi-PSSA/AuNPs electrode systems from -1.0 V to +1.5 V, beyond which PANi would overoxidize and lose its electroactivity. Therefore, cyclic voltammetry and steady state amperometry of the four dienes (MBD, PD, CHD and COD) were studied with unmodified Pt and GCE electrodes. Subtractively normalised interfacial-fourier transform infra-red (SNIFTIR) spectroscopic studies of the dienes were performed with Pt electrode. SNIFTIR data showed that there was a definite electro-oxidation of 1.3-cyclohexadiene as electrode potential was changed from E = 770 mV to E = 1638 mV. Severe electrode fouling was observed when steady state amperometric detection of CHD, as a representative diene, was performed on Pt electrode. Randel-Sevčik analysis of the CVs of the dienes on Pt electrode gave diffusion coefficient (Dox) values of 10.65 cm²/s, 9.55 cm²/s, 3.20 cm²/s and 3.96 cm²/s for CHD, COD, PD, and MBD, respectively. The corresponding detection limits (3σn-1) were 0.0106 M, 0.0111 M, 0.0109 M, and 0.0107 M

    Nanocellulose from the Appalachian Hardwood Forest and Its Potential Applications

    Get PDF
    Nanofibrillated cellulose (NFCs) are nanoscale fibers of high aspect ratio that can be isolated from a wide variety of cellulosic sources, including wood and bacterial cellulose. With high strength despite of their low density, NFCs are a promising renewable building block for the preparation of nanostructured materials and composites. To fabricate NFC-based materials with improved mechanical and chemical properties and additional new functionalities for different applications, it is essential to tailor the surface properties of individual NFCs. The surface structures control the interactions between NFCs and ultimately dictate the structure and macroscale properties of the bulk material. This research was focused on determining the feasibility of using hardwood residues from the Appalachian Hardwood Forest for the production of nanofibrillated cellulose (NFC). In addition, some modifications during the NFC production process were performed to evaluate their improvement to incorporate more antimicrobial copper in the cellulosic backbone. This thesis has been divided in the following main chapters: 1) Literature review regarding to nanocellulosic materials and their production processes, 2) Nanocellulose current and potential applications, 3) Nanofibrillated cellulose from the Appalachian Hardwood logging residues, 4) Modified nanofibrillated from the Appalachian Hardwood logging residues, 5) Preparation of nanocellulose using ionic liquids -- A review, 6) Nanocellulose-based drug delivery system -- A review, 7) Safety aspects on the utilization of lignocellulosic based materials - A review

    Effect of the air pressure on electro-Fenton process

    Get PDF
    Electro-Fenton process is considered a very promising tool for the treatment of waste waters contaminated by organic pollutants refractant or toxic for microorganisms used in biological processes [1-6]. In these processes H2O2 is continuously supplied to an acidic aqueous solution contained in an electrolytic cell from the two-electron reduction of oxygen gas, directly injected as pure gas or bubbled air. Due to the poor solubility of O2 in aqueous solutions, two dimensional cheap graphite or carbon felt electrodes give quite slow generation of H2O2, thus resulting in a slow abatement of organics. In this context, we report here a series of studies [7-9] on the effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. The effect of air pressure, current density, mixing and nature of the organic pollutant was evaluated. [1] E. Brillas, I. Sirés, M.A. Oturan, Chem. Rev., 109 (2009) 6570-6631. [2] C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Chem. Rev. 115 (2015) 13362–13407. [3] M. Panizza, G. Cerisola, Chem. Rev. 109 (2009) 6541–6569. [4] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Environ. Sci. Pollut. Res. 21 (2014) 8336–8367. [5] C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 35 (2006) 1324–1340. [6] B.P.P. Chaplin, Environ. Sci. Process. Impacts. 16 (2014) 1182–1203. [7] O. Scialdone, A. Galia, C. Gattuso, S. Sabatino, B. Schiavo, Electrochim. Acta, 182 (2015) 775-780. [8] J.F. Pérez, A. Galia, M.A. Rodrigo, J. Llanos, S. Sabatino, C. Sáez, B. Schiavo, O. Scialdone, Electrochim. Acta, 248 (2017) 169-177. [9] A.H. Ltaïef, S. Sabatino, F. Proietto, A. Galia, O. Scialdone, O. 2018, Chemosphere, 202, 111-118

    Pressurized CO2 Electrochemical Conversion to Formic Acid: From Theoretical Model to Experimental Results

    Get PDF
    To curb the severely rising levels of carbon dioxide in the atmosphere, new approaches to capture and utilize this greenhouse gas are currently being investigated. In the last few years, many researches have focused on the electrochemical conversion of CO2 to added-value products in aqueous electrolyte solutions. In this backdrop, the pressurized electroreduction of CO2 can be assumed an up-and-coming alternative process for the production of valuable organic chemicals [1-3]. In this work, the process was studied in an undivided cell with tin cathode in order to produce formic acid and develop a theoretical model, predicting the effect of several operative parameters. The model is based on the cathodic conversion of pressurized CO2 to HCOOH and it also accounts for its anodic oxidation. In particular, the electrochemical reduction of CO2 to formic acid was performed in pressurized filter press cell with a continuous recirculation of electrolytic solution (0.9 L) at a tin cathode (9 cm2) for a long time (charge passed 67’000 C). It was shown that it is possible to scale-up the process by maintaining good results in terms of faradaic efficiency and generating significantly high concentrations of HCOOH (about 0.4 M) [4]. It was also demonstrated that, for pressurized systems, the process is under the mixed kinetic control of mass transfer of CO2 and the reduction of adsorbed CO2 (described by the Langmuir equation), following our proposed reaction mechanism [5]. Moreover, the theoretical model is in good agreement with the experimental results collected and well describes the effect of several operating parameters, including current density, pressure, and the type of reactor used. 1. Ma, S., & Kenis, P. J. (2013). Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2(2), 191-199. 2. Endrődi, B., Bencsik, G., Darvas, F., Jones, R., Rajeshwar, K., & Janáky, C. (2017). Continuous-flow electroreduction of carbon dioxide. Progress in Energy and Combustion Science, 62, 133-154. 3. Dufek, E. J., Lister, T. E., Stone, S. G., & McIlwain, M. E. (2012). Operation of a pressurized system for continuous reduction of CO2. Journal of The Electrochemical Society, 159(9), F514-F517. 4. Proietto, F., Schiavo, B., Galia, A., & Scialdone, O. (2018). Electrochemical conversion of CO2 to HCOOH at tin cathode in a pressurized undivided filter-press cell. Electrochimica Acta, 277, 30-40. 5. Proietto, F., Galia, A., & Scialdone, O. (2019) Electrochemical conversion of CO2 to HCOOH at tin cathode: development of a theoretical model and comparison with experimental results. ChemElectroChem, 6, 162-172

    Biopolymers from Natural Resources

    Get PDF
    This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics
    corecore