531 research outputs found

    Increasing the Efficiency of 6-DoF Visual Localization Using Multi-Modal Sensory Data

    Full text link
    Localization is a key requirement for mobile robot autonomy and human-robot interaction. Vision-based localization is accurate and flexible, however, it incurs a high computational burden which limits its application on many resource-constrained platforms. In this paper, we address the problem of performing real-time localization in large-scale 3D point cloud maps of ever-growing size. While most systems using multi-modal information reduce localization time by employing side-channel information in a coarse manner (eg. WiFi for a rough prior position estimate), we propose to inter-weave the map with rich sensory data. This multi-modal approach achieves two key goals simultaneously. First, it enables us to harness additional sensory data to localise against a map covering a vast area in real-time; and secondly, it also allows us to roughly localise devices which are not equipped with a camera. The key to our approach is a localization policy based on a sequential Monte Carlo estimator. The localiser uses this policy to attempt point-matching only in nodes where it is likely to succeed, significantly increasing the efficiency of the localization process. The proposed multi-modal localization system is evaluated extensively in a large museum building. The results show that our multi-modal approach not only increases the localization accuracy but significantly reduces computational time.Comment: Presented at IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    Autonomous control of a humanoid soccer robot : development of tools and strategies using colour vision : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University

    Get PDF
    Humanoid robots research has been an ongoing area of development for researchers due to the benefits that humanoid robots present, whether for entertainment or industrial purposes because of their ability to move around in a human environment, mimic human movement and being aesthetically pleasing. The RoboCup is a competition designed to further the development of robotics, with the humanoid league being the forefront of the competition. A design for the robot platform to compete at an international level in the RoboCup competition will be developed. Along with the platform, tools are created to allow the robot to function autonomously, effectively and efficiently in this environment, primarily using colour vision as its main sensory input. By using a 'point and follow' approach to the robot control a simplistic A.I. was formed which enables the robot to complete the basic functionality of a striker of the ball. Mathematical models are then presented for the comparison of stereoscopic versus monoscopic vision, with the expansion on why monoscopic vision was chosen, due to the environment of the competition being known. A monoscopic depth perception mathematical model and algorithm is then developed, along with a ball trajectory algorithm to allow the robot to calculate a moving balls trajectory and react according to its motion path. Finally through analysis of the implementation of the constructed tools for the chosen platform, details on their effectiveness and their drawbacks are discussed

    Direct Visual SLAM Fusing Proprioception for a Humanoid Robot

    Get PDF

    MonoSLAM: Real-time single camera SLAM

    No full text
    Published versio
    • …
    corecore