403 research outputs found

    Humanizing robot dance movements

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Universidade do Porto. Faculdade de Engenharia. 201

    Development and Characteristics of a Highly Biomimetic Robotic Shoulder Through Bionics-Inspired Optimization

    Full text link
    This paper critically analyzes conventional and biomimetic robotic arms, underscoring the trade-offs between size, motion range, and load capacity in current biomimetic models. By delving into the human shoulder's mechanical intelligence, particularly the glenohumeral joint's intricate features such as its unique ball-and-socket structure and self-locking mechanism, we pinpoint innovations that bolster both stability and mobility while maintaining compactness. To substantiate these insights, we present a groundbreaking biomimetic robotic glenohumeral joint that authentically mirrors human musculoskeletal elements, from ligaments to tendons, integrating the biological joint's mechanical intelligence. Our exhaustive simulations and tests reveal enhanced flexibility and load capacity for the robotic joint. The advanced robotic arm demonstrates notable capabilities, including a significant range of motions and a 4 kg payload capacity, even exerting over 1.5 Nm torque. This study not only confirms the human shoulder joint's mechanical innovations but also introduces a pioneering design for a next-generation biomimetic robotic arm, setting a new benchmark in robotic technology

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Towards a Platform-Independent Cooperative Human Robot Interaction System: III. An Architecture for Learning and Executing Actions and Shared Plans

    Get PDF
    Robots should be capable of interacting in a cooperative and adaptive manner with their human counterparts in open-ended tasks that can change in real-time. An important aspect of the robot behavior will be the ability to acquire new knowledge of the cooperative tasks by observing and interacting with humans. The current research addresses this challenge. We present results from a cooperative human-robot interaction system that has been specifically developed for portability between different humanoid platforms, by abstraction layers at the perceptual and motor interfaces. In the perceptual domain, the resulting system is demonstrated to learn to recognize objects and to recognize actions as sequences of perceptual primitives, and to transfer this learning, and recognition, between different robotic platforms. For execution, composite actions and plans are shown to be learnt on one robot and executed successfully on a different one. Most importantly, the system provides the ability to link actions into shared plans, that form the basis of human-robot cooperation, applying principles from human cognitive development to the domain of robot cognitive systems. © 2009-2011 IEEE

    Human Motion Mapping to a Robot Arm with Redundancy Resolution

    Get PDF
    The problem of image based visual servoing for robots working in a dynamic environment is addressed in this paper. It is assumed that the environment is observed by depth sensors which allow to measure the distance between any moving obstacle and the robot. The main idea is to control suitable image moments during the interaction phase to relax a certain number of robot’s degrees of freedom. If an obstacle approaches the robot, the main visual servoing task is attenuated or completely abandoned while the image features are kept in the camera field of view by controlling the image moments. Fuzzy rules are used to set the reference values for the controller. Beside that, the relaxed redundancy of the robot is exploited to avoid collisions as well. After removing the risk of collision, the main visual servoing task is resumed. The effectiveness of the algorithm is shown by several case studies on a KUKA LWR 4 robot arm

    Design, Control, and Evaluation of a Human-Inspired Robotic Eye

    Get PDF
    Schulz S. Design, Control, and Evaluation of a Human-Inspired Robotic Eye. Bielefeld: Universität Bielefeld; 2020.The field of human-robot interaction deals with robotic systems that involve humans and robots closely interacting with each other. With these systems getting more complex, users can be easily overburdened by the operation and can fail to infer the internal state of the system or its ”intentions”. A social robot, replicating the human eye region with its familiar features and movement patterns, that are the result of years of evolution, can counter this. However, the replication of these patterns requires hard- and software that is able to compete with the human characteristics and performance. Comparing previous systems found in literature with the human capabili- ties reveal a mismatch in this regard. Even though individual systems solve single aspects, the successful combination into a complete system remains an open challenge. In contrast to previous work, this thesis targets to close this gap by viewing the system as a whole — optimizing the hard- and software, while focusing on the replication of the human model right from the beginning. This work ultimately provides a set of interlocking building blocks that, taken together, form a complete end-to-end solution for the de- sign, control, and evaluation of a human-inspired robotic eye. Based on the study of the human eye, the key driving factors are identified as the success- ful combination of aesthetic appeal, sensory capabilities, performance, and functionality. Two hardware prototypes, each based on a different actua- tion scheme, have been developed in this context. Furthermore, both hard- ware prototypes are evaluated against each other, a previous prototype, and the human by comparing objective numbers obtained by real-world mea- surements of the real hardware. In addition, a human-inspired and model- driven control framework is developed out, again, following the predefined criteria and requirements. The quality and human-likeness of the motion, generated by this model, is evaluated by means of a user study. This frame- work not only allows the replication of human-like motion on the specific eye prototype presented in this thesis, but also promotes the porting and adaption to less equipped humanoid robotic heads. Unlike previous systems found in literature, the presented approach provides a scaling and limiting function that allows intuitive adjustments of the control model, which can be used to reduce the requirements set on the target platform. Even though a reduction of the overall velocities and accelerations will result in a slower motion execution, the human characteristics and the overall composition of the interlocked motion patterns remain unchanged

    Parallel architectures for humanoid robots

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The structure of humanoid robots can be inspired to human anatomy and operation with open challenges in mechanical performance that can be achieved by using parallel kinematic mechanisms. Parallel mechanisms can be identified in human anatomy with operations that can be used for designing parallel mechanisms in the structure of humanoid robots. Design issues are outlined as requirements and performance for parallel mechanisms in humanoid structures. The example of LARMbot humanoid design is presented as from direct authors’ experience to show an example of the feasibility and efficiency of using parallel mechanisms in humanoid structures. This work is an extension of a paper presented at ISRM 2019 conference (International Symposium on Robotics and Mechatronics)

    Enhancing the Performance of a Biomimetic Robotic Elbow-and-Forearm System Through Bionics-Inspired Optimization

    Full text link
    This paper delineates the formulation and verification of an innovative robotic forearm and elbow design, mirroring the intricate biomechanics of human skeletal and ligament systems. Conventional robotic models often undervalue the substantial function of soft tissues, leading to a compromise between compactness, safety, stability, and range of motion. In contrast, this study proposes a holistic replication of biological joints, encompassing bones, cartilage, ligaments, and tendons, culminating in a biomimetic robot. The research underscores the compact and stable structure of the human forearm, attributable to a tri-bone framework and diverse soft tissues. The methodology involves exhaustive examinations of human anatomy, succeeded by a theoretical exploration of the contribution of soft tissues to the stability of the prototype. The evaluation results unveil remarkable parallels between the range of motion of the robotic joints and their human counterparts. The robotic elbow emulates 98.8% of the biological elbow's range of motion, with high torque capacities of 11.25 Nm (extension) and 24 Nm (flexion). Similarly, the robotic forearm achieves 58.6% of the human forearm's rotational range, generating substantial output torques of 14 Nm (pronation) and 7.8 Nm (supination). Moreover, the prototype exhibits significant load-bearing abilities, resisting a 5kg dumbbell load without substantial displacement. It demonstrates a payload capacity exceeding 4kg and rapid action capabilities, such as lifting a 2kg dumbbell at a speed of 0.74Hz and striking a ping-pong ball at an end-effector speed of 3.2 m/s. This research underscores that a detailed anatomical study can address existing robotic design obstacles, optimize performance and anthropomorphic resemblance, and reaffirm traditional anatomical principles

    VISU: A 3D Printed Functional Robot for Human Pose Replication

    Get PDF
    This paper presents VISU, a novel 3D printed functional robot. VISU is equipped with open-source technologies making it more modular in adapting Internet of Things (IoT) based services. VISU is able to detect and analyze the user’s activity and pose. In addition, a simple method to replicate the pose of a user is also proposed. VISU can also perform actions such as Face recognition, Object Recognition among other basic functionalities

    VISU: A 3D Printed Functional Robot for Human Pose Replication

    Get PDF
    563-569This paper presents VISU, a novel 3D printed functional robot. VISU is equipped with open-source technologies making it more modular in adapting Internet of Things (IoT) based services. VISU is able to detect and analyze the user’s activity and pose. In addition, a simple method to replicate the pose of a user is also proposed. VISU can also perform actions such as Face recognition, Object Recognition among other basic functionalities
    • …
    corecore