13 research outputs found

    Towards a framework for socially interactive robots

    Get PDF
    250 p.En las últimas décadas, la investigación en el campo de la robótica social ha crecido considerablemente. El desarrollo de diferentes tipos de robots y sus roles dentro de la sociedad se están expandiendo poco a poco. Los robots dotados de habilidades sociales pretenden ser utilizados para diferentes aplicaciones; por ejemplo, como profesores interactivos y asistentes educativos, para apoyar el manejo de la diabetes en niños, para ayudar a personas mayores con necesidades especiales, como actores interactivos en el teatro o incluso como asistentes en hoteles y centros comerciales.El equipo de investigación RSAIT ha estado trabajando en varias áreas de la robótica, en particular,en arquitecturas de control, exploración y navegación de robots, aprendizaje automático y visión por computador. El trabajo presentado en este trabajo de investigación tiene como objetivo añadir una nueva capa al desarrollo anterior, la capa de interacción humano-robot que se centra en las capacidades sociales que un robot debe mostrar al interactuar con personas, como expresar y percibir emociones, mostrar un alto nivel de diálogo, aprender modelos de otros agentes, establecer y mantener relaciones sociales, usar medios naturales de comunicación (mirada, gestos, etc.),mostrar personalidad y carácter distintivos y aprender competencias sociales.En esta tesis doctoral, tratamos de aportar nuestro grano de arena a las preguntas básicas que surgen cuando pensamos en robots sociales: (1) ¿Cómo nos comunicamos (u operamos) los humanos con los robots sociales?; y (2) ¿Cómo actúan los robots sociales con nosotros? En esa línea, el trabajo se ha desarrollado en dos fases: en la primera, nos hemos centrado en explorar desde un punto de vista práctico varias formas que los humanos utilizan para comunicarse con los robots de una maneranatural. En la segunda además, hemos investigado cómo los robots sociales deben actuar con el usuario.Con respecto a la primera fase, hemos desarrollado tres interfaces de usuario naturales que pretenden hacer que la interacción con los robots sociales sea más natural. Para probar tales interfaces se han desarrollado dos aplicaciones de diferente uso: robots guía y un sistema de controlde robot humanoides con fines de entretenimiento. Trabajar en esas aplicaciones nos ha permitido dotar a nuestros robots con algunas habilidades básicas, como la navegación, la comunicación entre robots y el reconocimiento de voz y las capacidades de comprensión.Por otro lado, en la segunda fase nos hemos centrado en la identificación y el desarrollo de los módulos básicos de comportamiento que este tipo de robots necesitan para ser socialmente creíbles y confiables mientras actúan como agentes sociales. Se ha desarrollado una arquitectura(framework) para robots socialmente interactivos que permite a los robots expresar diferentes tipos de emociones y mostrar un lenguaje corporal natural similar al humano según la tarea a realizar y lascondiciones ambientales.La validación de los diferentes estados de desarrollo de nuestros robots sociales se ha realizado mediante representaciones públicas. La exposición de nuestros robots al público en esas actuaciones se ha convertido en una herramienta esencial para medir cualitativamente la aceptación social de los prototipos que estamos desarrollando. De la misma manera que los robots necesitan un cuerpo físico para interactuar con el entorno y convertirse en inteligentes, los robots sociales necesitan participar socialmente en tareas reales para las que han sido desarrollados, para así poder mejorar su sociabilida

    Teleoperation robot for arms motions

    Get PDF
    Eesti keeles: Robootika kiire areng toob kaasa vajaduse tarkadeks robotiteks. Veel ei ole loodud lahendust, mis oleks sama kohanemisvõimeline kui inimene. Seepärast on praegune parim lahendus luua vahendid inimeste ning robotite koostööks. Paraku ei kasutata potentsiaali piisavalt ära ning paljud robotite juhtimissüsteemid on kohmakad ning ebamugavad. See motiveerib looma süsteemi, mida oleks kerge ja mugav juhtida. Lõputöö keskendub teiste sarnaste lahenduste ning vajalike töövahendite tutvustamisele. Peamiseks nõudeks on manipulaatori vaba liikumine. Selle tulemusena valmis kaugjuhtimise lahendus, kus robotmanipulaator liigub vastavalt käte liikumiskiirusele ning pöördenurgale. In English: The rapid development of robotics raises the need for smart robots. There are no solutions yet that are as adaptable as a human beings. Thus, the current best solution is to create solutions for collaborations of humans and robots. Unfortunately a lot of potential is wasted, making controlling systems awkward and aggravating. It gives motivation to create a system that is easy and comfortable to maneuver. The bachelor’s thesis focuses on other similar solutions and gives an overview about used tools and modules. The main requirement is free movement of a manipulator. As the result, the teleoperation solution is made, where the robot manipulator moves according to the speed of movement of the hands and follows the angle of rotation

    Nao robot as a domestic robot

    Get PDF
    Over the years robotics has made great progress. Nowadays, robots begin to be part of the life of any person, designated social robotic. Humanoid robots are fascinating and have several advantages, such as they can work in places where there is a risk of contamination, risk of health, danger of life, places that are difficult to access. They also are able to access different types of terrain and to climb stairs. NAO robot is currently the humanoid platform with high sensory capacity that it has lower costs in the market. This robot is similar to human in order to have a more real and natural with society. Using the capabilities of the robot and adding other sensors, we can have a more powerful machine in our society. NAO robot is presented in this paper as a domestic robot

    Educational Humanoid Robot Using A Sensoring Fusion Through Arduino

    Get PDF
    This paper describes the use of NAO robot, a humanoid robot and the use of Arduino in education for final engineering projects in the area of engineering. This learning approach was implemented in the final project of the Biomedical Engineering degree. The objective this project is the sensorial extension of the NAO platform, integrating a set of sensors that allow not only to analyze multiple vital parameters in a passive way but also to obtain a more precise contextual information

    Framework for autonomous navigation through MS HoloLenses

    Get PDF
    Τα τελευταία χρόνια, η τεράστια ανάπτυξη των τεχνολογιών εικονικής πραγματικότητας φαίνεται να κατακλύζει την τεχνολογική κοινότητα. Οι δυνατότητες που η οικογένεια της εικονικής πραγματικότητας φέρνει στο τραπέζι, αποτελούν μια εμπειρία που αλλάζει τόσο την καθημερινή όσο και τη βιομηχανική ζωή. Πιο συγκεκριμένα, η Επαυξημένη Πραγματικότητα (AR) θεωρείται από ένα μεγάλο μέρος της επιστημονικής κοινότητας, η κυρίαρχη τεχνολογία των Διεπαφών Χρήστη (UI). Το βασικό χαρακτηριστικό του AR είναι ότι προσθέτει ψηφιακό περιεχόμενο στο πραγματικό περιβάλλον χωρίς να απομονώνει το χρήστη από αυτό, παρέχοντας μια πολύ ρεαλιστική αλληλεπίδραση κοντά στην αντίληψη του χρήστη. Λαμβάνοντας υπόψη αυτά τα χαρακτηριστικά, η τεχνολογία AR μπορεί να χρησιμοποιηθεί για παράδειγμα σε περιπτώσεις βελτιωμένης μάθησης, ελέγχου μηχανής, πλοήγησης ανθρώπου / οχήματος. Για παράδειγμα, ένα AR UI ανεπτυγμένο σε γυαλιά AR μπορεί να βοηθήσει τον χειριστή να ελέγξει ένα μηχάνημα εύκολα και χωρίς κίνδυνο από απόσταση. Επιπλέον, αυτή η λειτουργικότητα μπορεί να εμπλουτιστεί χρησιμοποιώντας ένα μη επανδρωμένο όχημα, ένα ρομπότ, ως το μηχάνημα που θα ελέγχεται. Η ρομποτική είναι ένας τομέας της τεχνολογίας, του οποίου η παρέμβαση στη ζωή των ανθρώπων φαίνεται ασταμάτητη σε όλο και περισσότερες πτυχές. Σήμερα, τα μη επανδρωμένα οχήματα χρησιμοποιούνται στην πλειονότητα των βιομηχανικών δραστηριοτήτων και των καθημερινών συνηθειών. Ας εξετάσουμε μια κατάσταση κατά την οποία επιβλαβή απόβλητα πρέπει να εξαχθούν από μια συγκεκριμένη περιοχή. Η χρήση μη επανδρωμένου οχήματος είναι υποχρεωτική για τη συλλογή και την απομάκρυνση των αποβλήτων. Επιπλέον, ένα UI επαυξημένης πραγματικότητας για το τηλεχειριστήριο του UV, προσφέρει τη δυνατότητα στον χειριστή να αξιοποιήσει στο έπακρο τις δεξιότητές του χωρίς να διακινδυνεύσει τη ζωή του. Το AR UI προσφέρει έναν πολύ φυσικό και οικείο έλεγχο στον χρήστη. Σε αυτήν την πτυχιακή εργασία, εξετάζουμε το σενάριο όπου ο χρήστης ελέγχει / πλοηγεί ένα μη επανδρωμένο όχημα εδάφους με τη βοήθεια AR γυαλιών. Τα γυαλιά AR προβάλλουν μία ειδικά σχεδιασμένη διεπαφή χρήστη για τον έλεγχο κίνησης του ρομπότ. Η πλοήγηση του οχήματος εξαρτάται αποκλειστικά από την αντίληψη και την εμπειρία του χρήστη. Εκεί η τεχνολογία AR γίνεται πρακτική καθώς δεν επηρεάζει την όραση και την αντίληψη του περιβάλλοντος για τον χρήστη και το περιβάλλον του. Πιο συγκεκριμένα, πραγματοποιείται μια σειρά πειραμάτων, όπου ο χρήστης φορά τα AR γυαλιά και πλοηγεί το ρομπότ δίνοντας μια σειρά εντολών κίνησης. Φυσικά, το ρομπότ πρέπει να παραμένει πάντα στο οπτικό του πεδίο. Τα πειράματα εκτελέστηκαν τόσο σε προσομοιωμένο όσο και σε πραγματικό κόσμο. Για την προσομοίωση, χρησιμοποιήθηκε ο προσομοιωτής Gazebo με ένα εικονικό Turtlebot 2 με λειτουργικό σύστημα ROS και ο προσομοιωτής Unity για τα AR γυαλιά. Τα πειράματα του πραγματικού κόσμου εκτελέστηκαν με ένα Turtlebot2 που εκτελεί ROS και τα γυαλιά Microsoft HoloLens AR όπου αναπτύχθηκε η εφαρμογή AR.In recent years, the immense development of the virtual reality technologies seems to overwhelm the technological community. The possibilities which the virtual reality family brings to the table, pose a life changing experience for both daily and industrial life. More particular, Augmented Reality (AR) in considered by a large portion of the scientific community, the reign technology of User Interfaces (UI). The key feature of AR is that adds digital content to the real environment without isolating the user from it, providing a very realistic interaction, close to the user’s perception. Considering these features, AR technology can be used for instance in cases of enhanced learning, machine control, human/vehicle navigation. For example, an AR UI deployed in AR glasses can help the actor control a machine easily and without risk from distance. In addition, this functionality can be enriched by using an unmanned vehicle, a robot, as the machine that will be controlled. Robotics is a field of technology, whose intervention in people’s lives seems unstoppable in more and more aspects. Nowadays, unmanned vehicles are used in the majority of industrial operations and daily habits. Let us consider a situation where harmful waste should be extracted from a specific area. The use of an unmanned vehicle is mandatory for the collection and the removal of the waste. On top of this, an Augmented Reality UI for the remote control of the UV, offers the ability to the actor to make the most out of his skills without risking his life. The AR UI offers a very natural an intimate control to the user. In this Thesis, we examine the scenario where the user controls/navigates an unmanned ground vehicle with the aid of an AR headset. The AR headset projects a specially designed UI for the robot’s movement control. The vehicle’s navigation depends solely on the user’s perception and experience. That’s where the AR technology comes in handy as is does not affects the vision and the environment perception of the user and his surroundings. More specifically, a series of experiments are carried out, where the user wears the AR headset and navigates the robot by giving a series of movement commands. Of course, the robot should always remain on his field of view. Experiments were executed both in simulated and real world. For the simulation Gazebo simulator was used with a virtual Turtlebot 2 running ROS operating system and the Unity simulator for the AR headset. The real - world experiments were executed with a Turtlebot2 running ROS and the Microsoft HoloLens AR headset where our AR application was deployed

    Implementação de interação humano-robô por meio de voz na plataforma NAO

    Get PDF
    Trabalho de conclusão de curso (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Curso de Graduação em Engenharia de Controle e Automação, 2019.Este projeto busca desenvolver um sistema que permita a interação entre um usuário humano e um robô por meio da linguagem natural. Para desenvolvimento do sistema objeto deste projeto, foi escolhida a plataforma NAO, tendo em vista a sua alta aceitabilidade pelo usuário e facilidade na implementação de respostas multimodais. O sistema desenvolvido deverá ser capaz de capturar o áudio com as frases proferidas pelo usuário, realizar a transcrição e processar o conteúdo para identificar qual a intenção o usuário demonstrou. Cada intenção do usuário demanda uma resposta diferente, ativando a síntese de voz e movimentação do robô. As intenções programadas permi- tem diálogos simples, diálogos com contexto elaborado e locomoção do robô. A implementação utilizou o framework Robot Operating System (ROS) para gerenciamento dos processos, coorde- nando o fluxo de dados entre as aplicações distribuídas em diferentes computadores. O sistema implementado é avaliado conforme métricas padrões de aplicações em interação humano-robô.This project seeks to develop a system that allows interaction between a user and a robot through natural language. The NAO platform was chosen duo to its high user acceptability and ease implementation of multimodal responses. The system should be able to capture the audio with the phrases uttered by the user, transcribe and process the content to identify the intention the user has expressed. Each intention demands a different response, activating voice synthesis and robot movement. The programmed intentions allow simple dialogues, elaborated context dialogues and robot locomotion. The implementation used ROS framework for process management, coordinating the data flow between the API’s and different computers. Finally, the implemented system is evaluated according to standard application metrics in human-robot interaction

    Contextualized Robot Navigation

    Get PDF
    In order to improve the interaction between humans and robots, robots need to be able to move about in a way that is appropriate to the complex environments around them. One way to investigate how the robots should move is through the lens of theatre, which provides us with ways to analyze the robot\u27s movements and the motivations for moving in particular ways. In particular, this has proven useful for improving robot navigation. By altering the costmaps used for path planning, robots can navigate around their environment in ways that incorporate additional contexts. Experimental results with user studies have shown altered costmaps to have a significant effect on the interaction, although the costmaps must be carefully tuned to get the desired effect. The new layered costmap algorithm builds on the established open-source navigation platform, creating a robust system that can be extended to handle a wide range of contextual situations

    Bertsobot: gizaki-robot arteko komunikazio eta elkarrekintzarako portaerak

    Get PDF
    216 p.Bertsobot: Robot-Portaerak Gizaki-Robot Arteko Komunikazio eta ElkarrekintzanBertsotan aritzeko gaitasuna erakutsiko duen robot autonomoa garatzeada gure ikerketa-lanaren helburu behinena. Bere egitekoa, bertsoa osatzekoinstrukzioak ahoz jaso, hauek prozesatu eta ahalik eta bertsorik egokienaosatu eta kantatzea litzateke, bertsolarien oholtza gaineko adierazkortasunmaila erakutsiz gorputzarekin. Robot-bertsolariak, gizaki eta roboten artekoelkarrekintza eta komunikazioan aurrera egiteko modua jarri nahi luke, lengoaianaturala erabiliz robot-gizaki arteko bi noranzkoko komunikazioan
    corecore