259,169 research outputs found

    MEWL: Few-shot multimodal word learning with referential uncertainty

    Full text link
    Without explicit feedback, humans can rapidly learn the meaning of words. Children can acquire a new word after just a few passive exposures, a process known as fast mapping. This word learning capability is believed to be the most fundamental building block of multimodal understanding and reasoning. Despite recent advancements in multimodal learning, a systematic and rigorous evaluation is still missing for human-like word learning in machines. To fill in this gap, we introduce the MachinE Word Learning (MEWL) benchmark to assess how machines learn word meaning in grounded visual scenes. MEWL covers human's core cognitive toolkits in word learning: cross-situational reasoning, bootstrapping, and pragmatic learning. Specifically, MEWL is a few-shot benchmark suite consisting of nine tasks for probing various word learning capabilities. These tasks are carefully designed to be aligned with the children's core abilities in word learning and echo the theories in the developmental literature. By evaluating multimodal and unimodal agents' performance with a comparative analysis of human performance, we notice a sharp divergence in human and machine word learning. We further discuss these differences between humans and machines and call for human-like few-shot word learning in machines.Comment: Accepted at ICML 202

    Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning

    Full text link
    The Visual Dialogue task requires an agent to engage in a conversation about an image with a human. It represents an extension of the Visual Question Answering task in that the agent needs to answer a question about an image, but it needs to do so in light of the previous dialogue that has taken place. The key challenge in Visual Dialogue is thus maintaining a consistent, and natural dialogue while continuing to answer questions correctly. We present a novel approach that combines Reinforcement Learning and Generative Adversarial Networks (GANs) to generate more human-like responses to questions. The GAN helps overcome the relative paucity of training data, and the tendency of the typical MLE-based approach to generate overly terse answers. Critically, the GAN is tightly integrated into the attention mechanism that generates human-interpretable reasons for each answer. This means that the discriminative model of the GAN has the task of assessing whether a candidate answer is generated by a human or not, given the provided reason. This is significant because it drives the generative model to produce high quality answers that are well supported by the associated reasoning. The method also generates the state-of-the-art results on the primary benchmark

    GuessWhat?! Visual object discovery through multi-modal dialogue

    Get PDF
    We introduce GuessWhat?!, a two-player guessing game as a testbed for research on the interplay of computer vision and dialogue systems. The goal of the game is to locate an unknown object in a rich image scene by asking a sequence of questions. Higher-level image understanding, like spatial reasoning and language grounding, is required to solve the proposed task. Our key contribution is the collection of a large-scale dataset consisting of 150K human-played games with a total of 800K visual question-answer pairs on 66K images. We explain our design decisions in collecting the dataset and introduce the oracle and questioner tasks that are associated with the two players of the game. We prototyped deep learning models to establish initial baselines of the introduced tasks.Comment: 23 pages; CVPR 2017 submission; see https://guesswhat.a

    DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models

    Full text link
    A long-standing goal of AI systems is to perform complex multimodal reasoning like humans. Recently, large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking. However, the transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation and the limitations in terms of flexibility, generalizability, and explainability. To evoke CoT reasoning in multimodality, this work first conducts an in-depth analysis of these challenges posed by multimodality and presents two key insights: "keeping critical thinking" and "letting everyone do their jobs" in multimodal CoT reasoning. Furthermore, this study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning by first dividing the reasoning responsibility of LLMs into reasoning and recognition and then integrating the visual recognition capability of visual models into the joint reasoning process. The rationales generated by DDCoT not only improve the reasoning abilities of both large and small language models in zero-shot prompting and fine-tuning learning, significantly outperforming state-of-the-art methods but also exhibit impressive generalizability and explainability.Comment: 24 pages, 13 figures, to be published in NeurIPS 202

    Reason from Context with Self-supervised Learning

    Full text link
    Self-supervised learning (SSL) learns to capture discriminative visual features useful for knowledge transfers. To better accommodate the object-centric nature of current downstream tasks such as object recognition and detection, various methods have been proposed to suppress contextual biases or disentangle objects from contexts. Nevertheless, these methods may prove inadequate in situations where object identity needs to be reasoned from associated context, such as recognizing or inferring tiny or obscured objects. As an initial effort in the SSL literature, we investigate whether and how contextual associations can be enhanced for visual reasoning within SSL regimes, by (a) proposing a new Self-supervised method with external memories for Context Reasoning (SeCo), and (b) introducing two new downstream tasks, lift-the-flap and object priming, addressing the problems of "what" and "where" in context reasoning. In both tasks, SeCo outperformed all state-of-the-art (SOTA) SSL methods by a significant margin. Our network analysis revealed that the proposed external memory in SeCo learns to store prior contextual knowledge, facilitating target identity inference in the lift-the-flap task. Moreover, we conducted psychophysics experiments and introduced a Human benchmark in Object Priming dataset (HOP). Our results demonstrate that SeCo exhibits human-like behaviors
    corecore