114 research outputs found

    Shared Control of Assistive Robotic Manipulators

    Get PDF
    The continuum of controlling an assistive robotic manipulator (ARM) ranges from manual control to full autonomy. Shared control of an ARM operates in the space between manual control and full autonomy. This paper reviews the status quo on shared control of ARMs. Though users and ARMs can divide responsibilities for a manipulation task in different ways, most research in this area focus on maximizing robot autonomy and minimizing user control, while other work split the responsibilities more evenly between the ARM and the user. User studies in this area are very limited. More research is needed to investigate the overall performance, workload, and satisfaction across different levels of autonomy for the shared control of ARMs

    Design and Development of Assistive Robots for Close Interaction with People with Disabilities

    Get PDF
    People with mobility and manipulation impairments wish to live and perform tasks as independently as possible; however, for many tasks, compensatory technology does not exist, to do so. Assistive robots have the potential to address this need. This work describes various aspects of the development of three novel assistive robots: the Personal Mobility and Manipulation Appliance (PerMMA), the Robotic Assisted Transfer Device (RATD), and the Mobility Enhancement Robotic Wheelchair (MEBot). PerMMA integrates mobility with advanced bi-manual manipulation to assist people with both upper and lower extremity impairments. The RATD is a wheelchair mounted robotic arm that can lift higher payloads and its primary aim is to assist caregivers of people who cannot independently transfer from their electric powered wheelchair to other surfaces such as a shower bench or toilet. MEBot is a wheeled robot that has highly reconfigurable kinematics, which allow it to negotiate challenging terrain, such as steep ramps, gravel, or stairs. A risk analysis was performed on all three robots which included a Fault Tree Analysis (FTA) and a Failure Mode Effect Analysis (FMEA) to identify potential risks and inform strategies to mitigate them. Identified risks or PerMMA include dropping sharp or hot objects. Critical risks identified for RATD included tip over, crush hazard, and getting stranded mid-transfer, and risks for MEBot include getting stranded on obstacles and tip over. Lastly, several critical factors, such as early involvement of people with disabilities, to guide future assistive robot design are presented

    Development And Human Performance Evaluation Of Control Modes Of An Exo-Skeletal Assistive Robotic Arm (esara)

    Get PDF
    This research was conducted to assist with functional tasks for a targeted group of individuals with spinal cord injury (SCI); with C5 to C7 level of injury relating to upper extremity movement. The specific population was selected as the existing technology was either too expensive, too bulky or was unable to address their needs in regards to upper extremity mobility. In addition, no platforms allowed multimodal control options for customization or provided a methodology for this crucial evaluation. The motivation of this research was to provide a methodology for selecting the appropriate control of an assistive device based on the range of basic human movements that were possible by the population under consideration (button pushing, lever sliding, and speech). The main idea was to create an evaluation methodology based on a user platform with multiple modes of control. The controls were developed such that they would allow operation of the device with respect to the capabilities of SCI participants. Engineering advancements have taken assistive robotics to new dimensions. Technologies such as wheelchair robotics and myo-electronically controlled systems have opened up a wide range of new applications to assist people with physical disabilities. Similarly exo-skeletal limbs and body suits have provided new foundations from which technologies can aid function. Unfortunately, these devices have issues of usability, weight, and discomfort with donning. The Smart Assistive Reacher Arm (SARA) system, developed in this research, is a voice-activated, lightweight, mobile device that can be used when needed. SARA was built to help overcome daily reach challenges faced by individuals with limited arm and hand movement capability, such as people with cervical level 5-6 (C5-6) SCI. The functional reacher arm with voice control can be beneficial for this population. Comparison study with healthy participants and an SCI participant shows that, when using SARA, a person with SCI can perform simple reach and grasp tasks independently, without someone else\u27s help. This suggests that the interface is intuitive and can be easily used to a high-level of proficiency by a SCI individual. Using SARA, an Exo-Skeletal Assistive Robotic Arm (eSARA) was designed and built. eSARA platform had multiple modes of control namely, voice (ballistic mode with no extremity movement), button (ballistic mode with minor extremity movement) and slider (continuous mode with major extremity movement). eSARA was able to extend a total of 7 inches from its original position. The platform also provided lift assist for users that can potentially enable them to lift up to 20lbs.The purpose of eSARA was to build a platform that could help design a methodology to select the modality for a specific level of SCI injury or capability. The eSARA platform\u27s Human Machine Interface (HMI) was based on two experiments `Fine movement experiment\u27 and `Gross movement experiment\u27. These experiments tested the reaching, grasping and lifting ability of the platform. Two groups of healthy young adults were selected to perform the experiment. The first group, 12 healthy participants, had no movement restrictions. The second group, 6 Occupational Therapy students, that could mimic restrictions similar to those of a level 5-6 SCI individual. The experiment was also conducted by an SCI individual. The results of the 2 groups from both the experiments were compared with the results of the SCI participant. It was found that the SCI participant\u27s time performance to finish the tasks was comparable to the average of the healthy participants. It was concluded that the developed methodology and platforms could be used to evaluate the control modes needed in order to customize the system to the capabilities of SCI individual. . These platforms can be tested for a broader range of participants including participants with arthritis, recovering from paralysis and seniors with movement issues

    Neuromechanical Model-Based Adaptive Control of Bilateral Ankle Exoskeletons:Biological Joint Torque and Electromyogram Reduction Across Walking Conditions

    Get PDF
    To enable the broad adoption of wearable robotic exoskeletons in medical and industrial settings, it is crucial they can adaptively support large repertoires of movements. We propose a new human-machine interface to simultaneously drive bilateral ankle exoskeletons during a range of 'unseen' walking conditions and transitions that were not used for establishing the control interface. The proposed approach used person-specific neuromechanical models to estimate biological ankle joint torques in real-time from measured electromyograms (EMGS) and joint angles. We call this 'neuromechanical model-based control' (NMBC). NMBC enabled six individuals to voluntarily control a bilateral ankle exoskeleton across six walking conditions, including all intermediate transitions, i.e., two walking speeds, each performed at three ground elevations. A single subject case-study was carried out on a dexterous locomotion tasks involving moonwalking. NMBC always enabled reducing biological ankle torques, as well as eight ankle muscle EMGs both within (22% torque;12% EMG) and between walking conditions (24% torque; 14% EMG) when compared to non-assisted conditions. Torque and EMG reductions in novel walking conditions indicated that the exoskeleton operated symbiotically, as an exomuscle controlled by the operator.s neuromuscular system. This opens new avenues for the systematic adoption of wearable robots as part of out-of-the-lab medical and occupational settings
    corecore