780 research outputs found

    A Biomechanical Model for the Development of Myoelectric Hand Prosthesis Control Systems

    Get PDF
    Advanced myoelectric hand prostheses aim to reproduce as much of the human hand's functionality as possible. Development of the control system of such a prosthesis is strongly connected to its mechanical design; the control system requires accurate information on the prosthesis' structure and the surrounding environment, which can make development difficult without a finalized mechanical prototype. This paper presents a new framework for the development of electromyographic hand control systems, consisting of a prosthesis model based on the biomechanical structure of the human hand. The model's dynamic structure uses an ellipsoidal representation of the phalanges. Other features include underactuation in the fingers and thumb modeled with bond graphs, and a viscoelastic contact model. The model's functions are demonstrated by the execution of lateral and tripod grasps, and evaluated with regard to joint dynamics and applied forces. Finally, additions are suggested with which this model can be of use in mechanical design and patient training as well

    Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand

    Get PDF
    In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extensio

    Advanced grasping with the Pisa/IIT softHand

    Get PDF
    This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Estimation of the Interaction Forces in a Compliant pHRI Gripper

    Get PDF
    Physical human–robot interaction (pHRI) is an essential skill for robots expected to work with humans, such as assistive or rescue robots. However, due to hard safety and compliance constraints, pHRI is still underdeveloped in practice. Tactile sensing is vital for pHRI, as constant occlusions while grasping make it hard to rely on vision or range sensors alone. More specifically, measuring interaction forces in the gripper is crucial to avoid injuries, predict user intention and perform successful collaborative movements. This work exploits the inherent compliance of a gripper with four underactuated fingers which was previously designed by the authors and designed to manipulate human limbs. A new analytical model is proposed to calculate the external interaction forces by combining all finger forces, which are estimated by using the gripper proprioceptive sensor readings uniquely. An experimental evaluation of the method and an example application in a control system with active compliance have been included to evaluate performance. The results prove that the proposed finger arrangement offers good performance at measuring the lateral interaction forces and torque around the gripper’s Z-axis, providing a convenient and efficient way of implementing adaptive and compliant grasping for pHRI applications.This work was supported by the Universidad de Málaga, project UMA20-FEDERJA-052. Partial funding for open access charge: Universidad de Málag

    Adaptive Underactuated Finger with Active Rolling Surface

    Get PDF
    This paper presents the design, prototype and kinematic model of a new adaptive underactuated finger with an articulated skin/surface that is able to bend and, at the same time, provides active rolling motion along its central axis while keeping the finger configuration. The design is based on a planar chain of overlapping spherical phalanxes that are tendon-driven. The finger has an articulated surface made of an external chain of hollow universal joints that can rotate via its central axis on the surface of the internal structure. The outer surface provides a second active Degree of Freedom (DoF). The two actuators, driving the bending and/or rolling motion, can be used independently. A set of experiments have been included to validate and measure the performance of the prototype for the grasping and rolling actions. The proposed finger can be built with a different number of phalanxes and sizes. A number of these fingers can be arranged along a palm structure resulting in a multi-finger robotic grasper for applications that require adaptation and in-hand manipulation capabilities such as pHRI

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    Design, implementation, and evaluation of a variable stiffness transradial hand prosthesis

    Get PDF
    We present the design, implementation, and experimental evaluation of a low-cost, customizable, easy-to-use transradial hand prosthesis capable of adapting its compliance. Variable stiffness actuation (VSA) of the prosthesis is based on antagonistically arranged tendons coupled to nonlinear springs driven through a Bowden cable based power transmission. Bowden cable based antagonistic VSA can, not only regulate the stiffness and the position of the prosthetic hand but also enables a light-weight and low-cost design, by the opportunistic placement of motors, batteries, and controllers on any convenient location on the human body, while nonlinear springs are conveniently integrated inside the forearm. The transradial hand prosthesis also features tendon driven underactuated compliant fingers that allow natural adaption of the hand shape to wrap around a wide variety of object geometries, while the modulation of the stiffness of their drive tendons enables the prosthesis to perform various tasks with high dexterity. The compliant fingers of the prosthesis add inherent robustness and flexibility, even under impacts. The control of the variable stiffness transradial hand prosthesis is achieved by an sEMG based natural human-machine interface
    corecore