430,858 research outputs found

    A Novel Approach for Operating Electrical Appliances Using Hand Gesture Recognition

    Get PDF
    Vision-based automatic hand gesture acknowledgement has been a very active research theme in recent years with inspiring applications such as human computer interaction (HCI), electronics device command, and signal language understanding. Hand sign recognition is presented through a curvature space procedure in which finding the boundary contours of the hand are engaged. This is a robust approach that is scale, translation and rotation invariant on the hand poses yet it is computationally demanding. A method for signal acknowledgement for signal language understanding has been proposed in computer vision. Human interaction involves various hand processing task like hand detection, recognition and hand tracking. This technology mainly focuses on the needs of physically challenged group of people and helps them to operate just by showing hand gestures. Thus, our project is aimed at making a system that could recognized human gesture through computer vision

    A Customizable Camera-based Human Computer Interaction System Allowing People With Disabilities Autonomous Hands Free Navigation of Multiple Computing Task

    Full text link
    Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.National Science Foundation (IIS-0093367, IIS-0329009, 0202067

    The human eye as human-machine interface

    Get PDF
    Eye tracking as an interface to operate a computer is under research for a while and new systems are still being developed nowadays that provide some encouragement to those bound to illnesses that incapacitates them to use any other form of interaction with a computer. Although using computer vision processing and a camera, these systems are usually based on head mount technology being considered a contact type system. This paper describes the implementation of a human-computer interface based on a fully non-contact eye tracking vision system in order to allow people with tetraplegia to interface with a computer. As an assistive technology, a graphical user interface with special features was developed including a virtual keyboard to allow user communication, fast access to pre-stored phrases and multimedia and even internet browsing. This system was developed with the focus on low cost, user friendly functionality and user independency and autonomy.The authors would like to thank the important contributions of Mr. Abel, his wife and Mr. Sampaio for the success of this work. This work was supported by the Automation and Robotics Laboratory from the Algoritmi Research Center at the University of Minho in Guimaraes. This work is funded by FEDER through the Operational Competitiveness Programme — COMPETE — and by national funds through the Foundation for Science and Technology — FCT — in the scope of project: FCOMP-01-0124-FEDER-022674

    Speech Signal Processing

    Get PDF
    This computer code project based mostly paper is for a vision of the close to future during which pc interaction is defined by natural face-to-face conversations with lifelike characters that talk, emote and gesture. The first step is speech. The dream of a real computer game, a whole human-computer interaction system won't come back true unless we tend to try and offer some perception to machine and build it understand the skin world as humans communicate with one another. This software package project is below development for “listening and replying machine (Computer) through speech”

    Human Action Recognition Based on Temporal Pyramid of Key Poses Using RGB-D Sensors

    Get PDF
    Human action recognition is a hot research topic in computer vision, mainly due to the high number of related applications, such as surveillance, human computer interaction, or assisted living. Low cost RGB-D sensors have been extensively used in this field. They can provide skeleton joints, which represent a compact and effective representation of the human posture. This work proposes an algorithm for human action recognition where the features are computed from skeleton joints. A sequence of skeleton features is represented as a set of key poses, from which histograms are extracted. The temporal structure of the sequence is kept using a temporal pyramid of key poses. Finally, a multi-class SVM performs the classification task. The algorithm optimization through evolutionary computation allows to reach results comparable to the state-of-the-art on the MSR Action3D dataset.This work was supported by a STSM Grant from COST Action IC1303 AAPELE - Architectures, Algorithms and Platforms for Enhanced Living Environments
    • 

    corecore