22 research outputs found

    Using genetic algorithms as a core gameplay mechanic

    Get PDF
    In this thesis we used genetic algorithms as a core gameplay mechanic for games. We created a flexible genetic algorithms framework that allowed us to iterate quickly through various designs and prototypes of games. We developed two iterations of fighting robots game and a racing game that used our framework to implement genetic algorithms. Playtesting showed that such a sophisticated game mechanic like this one can be fun and appealing to players

    Efficient Multi-Objective NeuroEvolution in Computer Vision and Applications for Threat Identification

    Get PDF
    Concealed threat detection is at the heart of critical security systems designed to en- sure public safety. Currently, methods for threat identification and detection are primarily manual, but there is a recent vision to automate the process. Problematically, developing computer vision models capable of operating in a wide range of settings, such as the ones arising in threat detection, is a challenging task involving multiple (and often conflicting) objectives. Automated machine learning (AutoML) is a flourishing field which endeavours to dis- cover and optimise models and hyperparameters autonomously, providing an alternative to classic, effort-intensive hyperparameter search. However, existing approaches typ- ically show significant downsides, like their (1) high computational cost/greediness in resources, (2) limited (or absent) scalability to custom datasets, (3) inability to provide competitive alternatives to expert-designed and heuristic approaches and (4) common consideration of a single objective. Moreover, most existing studies focus on standard classification tasks and thus cannot address a plethora of problems in threat detection and, more broadly, in a wide variety of compelling computer vision scenarios. This thesis leverages state-of-the-art convolutional autoencoders and semantic seg- mentation (Chapter 2) to develop effective multi-objective AutoML strategies for neural architecture search. These strategies are designed for threat detection and provide in- sights into some quintessential computer vision problems. To this end, the thesis first introduces two new models, a practical Multi-Objective Neuroevolutionary approach for Convolutional Autoencoders (MONCAE, Chapter 3) and a Resource-Aware model for Multi-Objective Semantic Segmentation (RAMOSS, Chapter 4). Interestingly, these ap- proaches reached state-of-the-art results using a fraction of computational resources re- quired by competing systems (0.33 GPU days compared to 3150), yet allowing for mul- tiple objectives (e.g., performance and number of parameters) to be simultaneously op- timised. This drastic speed-up was possible through the coalescence of neuroevolution algorithms with a new heuristic technique termed Progressive Stratified Sampling. The presented methods are evaluated on a range of benchmark datasets and then applied to several threat detection problems, outperforming previous attempts in balancing multiple objectives. The final chapter of the thesis focuses on thread detection, exploiting these two mod- els and novel components. It presents first a new modification of specialised proxy scores to be embedded in RAMOSS, enabling us to further accelerate the AutoML process even more drastically while maintaining avant-garde performance (above 85% precision for SIXray). This approach rendered a new automatic evolutionary Multi-objEctive method for cOncealed Weapon detection (MEOW), which outperforms state-of-the-art models for threat detection in key datasets: a gold standard benchmark (SixRay) and a security- critical, proprietary dataset. Finally, the thesis shifts the focus from neural architecture search to identifying the most representative data samples. Specifically, the Multi-objectIve Core-set Discovery through evolutionAry algorithMs in computEr vision approach (MIRA-ME) showcases how the new neural architecture search techniques developed in previous chapters can be adapted to operate on data space. MIRA-ME offers supervised and unsupervised ways to select maximally informative, compact sets of images via dataset compression. This operation can offset the computational cost further (above 90% compression), with a minimal sacrifice in performance (less than 5% for MNIST and less than 13% for SIXray). Overall, this thesis proposes novel model- and data-centred approaches towards a more widespread use of AutoML as an optimal tool for architecture and coreset discov- ery. With the presented and future developments, the work suggests that AutoML can effectively operate in real-time and performance-critical settings such as in threat de- tection, even fostering interpretability by uncovering more parsimonious optimal models. More widely, these approaches have the potential to provide effective solutions to chal- lenging computer vision problems that nowadays are typically considered unfeasible for AutoML settings

    Automatic Game Parameter Tuning using General Video Game Agents

    Get PDF
    Automatic Game Design is a subfield of Game Artificial Intelligence that aims to study the usage of AI algorithms for assisting in game design tasks. This dissertation presents a research work in this field, focusing on applying an evolutionary algorithm to video game parameterization. The task we are interested in is player experience. N-Tuple Bandit Evolutionary Algorithm (NTBEA) is an evolutionary algorithm that was recently proposed and successfully applied in game parameterization in a simple domain, which is the first experiment included in this project. To further investigating its ability in evolving game parameters, We applied NTBEA to evolve parameter sets for three General Video Game AI (GVGAI) games, because GVGAI has variety supplies of video games in different types and the framework has already been prepared for parameterization. 9 positive increasing functions were picked as target functions as representations of the player expected score trends. Our initial assumption was that the evolved games should provide the game environments that allow players to obtain score in the same trend as one of these functions. The experiment results confirm this for some functions, and prove that the NTBEA is very much capable of evolving GVGAI games to satisfy this task

    A survey on evolutionary-aided design in robotics

    Get PDF
    The evolutionary-aided design process is a method to find solutions to design and optimisation problems. Evolutionary Algorithms (EAs) are applied to search for optimal solutions from a solution space that evolves over several generations. EAs have found applications in many areas of robotics. This paper covers the efforts to determine body morphology of robots through evolution and body morphology with the controller of robots or similar creatures through co-evolution. The works are reviewed from the perspective of how different algorithms are applied and includes a brief explanation of how they are implemented
    corecore