673 research outputs found

    Extracting Human-Exoskeleton Interaction Torque for Cable-Driven Upper-Limb Exoskeleton Equipped With Torque Sensors

    Get PDF

    Kinematical and dynamical modeling of a multipurpose upper limbs rehabilitation robot

    Get PDF
    Knowing accurate model of a system is always beneficial to design a robust and safe control while allowing reduction of sensors-related cost as the system outputs are predictable using the model. In this context, this paper addresses the kinematical and dynamical model identification of the multipurpose rehabilitation robot, Universal Haptic Pantograph (UHP), and present experimental validations of the identified models. The UHP is a Pantograph based innovative robot actuated by two SEAs (Series Elastic Actuator), aiming at training impaired upper limbs after a stroke. This novel robot, thanks to its lockable/unlockable joints, can change its mechanical structure so that it enables stroke patient to perform different training exercises of the shoulder, elbow and wrist. This work focuses on the ARM mode, which is a training mode used to rehabilitate elbow and shoulder. The kinematical model of UHP is identified based on the loop vector equations, while the dynamical model is derived based on the Lagrangian formulation. To demonstrate the accuracy of the models, several experimental tests were performed. The results reveal that the mean position error between estimated values with the model and actual measured values stays in 3 mm (less than 2% of the maximum motion range). Moreover, the error between estimated and measured interaction force is smaller than 10% of maximum force range. So, the developed models can be adopted to estimate motion and force of UHP as well as control it without the need of additional sensors such as a force sensor, resulting in the reduction of total robot cost.This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU’s PPG17/56 project, Basque Country Governments IT914-16 project, Spanish Ministry of Economy and Competitiveness’ MINECO & FEDER inside DPI- 2012-32882 projects, Spanish Ministry of Economy and Competitiveness BES-2013-066142 grant, Euskampus, FIK

    Kinematical and dynamical modelling of a multipurpose upper limbs rehabilitation robot

    Get PDF
    Knowing accurate model of a system is always beneficial to design a robust and safe control while allowing reduction of sensors-related cost as the system outputs are predictable using the model. In this context, this paper addresses the kinematical and dynamical model identification of the multipurpose rehabilitation robot, Universal Haptic Pantograph (UHP), and present experimental validations of the identified models. The UHP is a Pantograph based innovative robot actuated by two SEAs (Series Elastic Actuator), aiming at training impaired upper limbs after a stroke. This novel robot, thanks to its lockable/unlockable joints, can change its mechanical structure so that it enables stroke patient to perform different training exercises of the shoulder, elbow and wrist. This work focuses on the ARM mode, which is a training mode used to rehabilitate elbow and shoulder. The kinematical model of UHP is identified based on the loop vector equations, while the dynamical model is derived based on the Lagrangian formulation. To demonstrate the accuracy of the models, several experimental tests were performed. The results reveal that the mean position error between estimated values with the model and actual measured values stays in 3 mm (less than 2% of the maximum motion range). Moreover, the error between estimated and measured interaction force is smaller than 10% of maximum force range. So, the developed models can be adopted to estimate motion and force of UHP as well as control it without the need of additional sensors such as a force sensor, resulting in the reduction of total robot cost.This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU’s PPG17/56 project, Basque Country Governments IT914-16 project, Spanish Ministry of Economy and Competitiveness’ MINECO & FEDER inside DPI2012-32882 projects, Spanish Ministry of Economy and Competitiveness BES-2013-066142 grant, Euskampus, FIK

    Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot

    Get PDF
    Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient\u27s torso and the force is transmitted through a Bowden cable mechanism. Since the actuators\u27 mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented

    A Low-Cost Soft Robotic Hand Exoskeleton for Use in Therapy of Limited Hand–Motor Function

    Get PDF
    We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the same kinematic functionality, but with the focus shifted to ease of assembly and cost effectiveness as to allow patients and physicians to manufacture and assemble the hardware necessary to implement treatment. The exoskeleton was constructed solely from 3D-printed and widely available of-the-shelf components. Control of the actuators was realized using an Arduino microcontroller, with a custom-designed shield to facilitate ease of wiring. Tests were conducted to verify that the range of motion of the digits and the forces exerted at the fingertip coincided with those of a healthy human hand

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Design and Development of a Twisted String Exoskeleton Robot for the Upper Limb

    Get PDF
    High-intensity and task-specific upper-limb treatment of active, highly repetitive movements are the effective approaches for patients with motor disorders. However, with the severe shortage of medical service in the United States and the fact that post-stroke survivors can continue to incur significant financial costs, patients often choose not to return to the hospital or clinic for complete recovery. Therefore, robot-assisted therapy can be considered as an alternative rehabilitation approach because the similar or better results as the patients who receive intensive conventional therapy offered by professional physicians.;The primary objective of this study was to design and fabricate an effective mobile assistive robotic system that can provide stroke patients shoulder and elbow assistance. To reduce the size of actuators and to minimize the weight that needs to be carried by users, two sets of dual twisted-string actuators, each with 7 strands (1 neutral and 6 effective) were used to extend/contract the adopted strings to drive the rotational movements of shoulder and elbow joints through a Bowden cable mechanism. Furthermore, movements of non-disabled people were captured as templates of training trajectories to provide effective rehabilitation.;The specific aims of this study included the development of a two-degree-of-freedom prototype for the elbow and shoulder joints, an adaptive robust control algorithm with cross-coupling dynamics that can compensate for both nonlinear factors of the system and asynchronization between individual actuators as well as an approach for extracting the reference trajectories for the assistive robotic from non-disabled people based on Microsoft Kinect sensor and Dynamic time warping algorithm. Finally, the data acquisition and control system of the robot was implemented by Intel Galileo and XILINX FPGA embedded system

    Evaluation of a Soft Robotic Knee Exosuit for Assistance in Stair Ascent

    Get PDF
    abstract: Muscular weakness is a common manifestation for Stroke survivors and for patients with Anterior Cruciate Ligament reconstruction leading to reduced functional independence, especially mobility. Several rigid orthotic devices are being designed to assist mobility. However, limitations in majority of these devices are: 1) that they are constrained only to level walking applications, 2) are mostly bulky and rigid lacking user comfort. For these reasons, rehabilitation using soft-robotics can serve as a powerful modality in gait assistance and potentially accelerate functional recovery. The characteristics of soft robotic exosuit is that it’s more flexible, delivers high power to weight ratio, and conforms with the user’s body structure making it a suitable choice. This work explores the implementation of an existing soft robotic exosuit in assisting knee joint mechanism during stair ascent for patients with muscular weakness. The exosuit assists by compensating the lack of joint moment and minimizing the load on the affected limb. It consists of two I-cross-section soft pneumatic actuators encased within a sleeve along with insole sensor shoes and control electronics. The exosuit actuators were mechanically characterized at different angles, in accordance to knee flexion in stair gait, to enable the generation of the desired joint moments. A linear relation between the actuator stiffness and internal pressure as a function of the knee angle was obtained. Results from this characterization along with the insole sensor outputs were used to provide assistance to the knee joint. Analysis of stair gait with and without the exosuit ‘active’ was performed, using surface electromyography (sEMG) sensors, for two healthy participants at a slow walking speed. Preliminary user testing with the exosuit presented a promising 16% reduction in average muscular activity of Vastus Lateralis muscle and a 3.6% reduction on Gluteus Maximus muscle during the stance phase and unrestrained motion during the swing phase of ascent thereby demonstrating the applicability of the soft-inflatable exosuit in rehabilitation.Dissertation/ThesisMasters Thesis Biomedical Engineering 201

    Design and bio-mechanical evaluation of upper-body exoskeletons for physical assistance

    Get PDF

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF
    • …
    corecore