331,057 research outputs found

    The Use of Translation Tool in Efl Learning: Do Machine Translation Give Positive Impact in Language Learning?

    Full text link
    Translation tools are commonly used for translating a text written in one language (source language) into another language (target language). They are used to help translators in translating big numbers of translation works in effective time. There are three types of translation tools being studied in the article entitled Machine Translation Tools: Tools of the Translator's Trade written by Peter Katsberg published in 2012. They are Fully Automated Machine Translation (or FAMT), Human Aided Machine Translation (or HAMT) and Machine Aided Human Translation (or MAHT). Katsberg analyzed how each translation tool works, the naturality and approriateness of its translation and the compatibility of using it. In this digital era, translation tools are not only popular among translators but also among EFL learners. Beginning with the use of portable dictionary such as Alfalink and expanding to the more sopisticated translation tool such as Google Translate. Some novice learners usually use this translation tools in doing their task without recorrecting the translation result. This happens perhaps because they do not have enough background knowledge to evaluate the translation result. Thus, it will be better when the learners have good mastery in basic English and train them to be aware in evaluating the result from translation tools. On the other words, Human Aided Machine Translation may be the wise choice to do translation task effectively and efficiently particularly in managing the time

    A Shared Task on Bandit Learning for Machine Translation

    Full text link
    We introduce and describe the results of a novel shared task on bandit learning for machine translation. The task was organized jointly by Amazon and Heidelberg University for the first time at the Second Conference on Machine Translation (WMT 2017). The goal of the task is to encourage research on learning machine translation from weak user feedback instead of human references or post-edits. On each of a sequence of rounds, a machine translation system is required to propose a translation for an input, and receives a real-valued estimate of the quality of the proposed translation for learning. This paper describes the shared task's learning and evaluation setup, using services hosted on Amazon Web Services (AWS), the data and evaluation metrics, and the results of various machine translation architectures and learning protocols.Comment: Conference on Machine Translation (WMT) 201

    Automatic classification of human translation and machine translation : a study from the perspective of lexical diversity

    Get PDF
    By using a trigram model and fine-tuning a pretrained BERT model for sequence classification, we show that machine translation and human translation can be classified with an accuracy above chance level, which suggests that machine translation and human translation are different in a systematic way. The classification accuracy of machine translation is much higher than of human translation. We show that this may be explained by the difference in lexical diversity between machine translation and human translation. If machine translation has independent patterns from human translation, automatic metrics which measure the deviation of machine translation from human translation may conflate difference with quality. Our experiment with two different types of automatic metrics shows correlation with the result of the classification task. Therefore, we suggest the difference in lexical diversity between machine translation and human translation be given more attention in machine translation evaluation.Publisher PD

    Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback

    Full text link
    Machine translation is a natural candidate problem for reinforcement learning from human feedback: users provide quick, dirty ratings on candidate translations to guide a system to improve. Yet, current neural machine translation training focuses on expensive human-generated reference translations. We describe a reinforcement learning algorithm that improves neural machine translation systems from simulated human feedback. Our algorithm combines the advantage actor-critic algorithm (Mnih et al., 2016) with the attention-based neural encoder-decoder architecture (Luong et al., 2015). This algorithm (a) is well-designed for problems with a large action space and delayed rewards, (b) effectively optimizes traditional corpus-level machine translation metrics, and (c) is robust to skewed, high-variance, granular feedback modeled after actual human behaviors.Comment: 11 pages, 5 figures, In Proceedings of Empirical Methods in Natural Language Processing (EMNLP) 201

    Implementation of a Human-Computer Interface for Computer Assisted Translation and Handwritten Text Recognition

    Full text link
    A human-computer interface is developed to provide services of computer assisted machine translation (CAT) and computer assisted transcription of handwritten text images (CATTI). The back-end machine translation (MT) and handwritten text recognition (HTR) systems are provided by the Pattern Recognition and Human Language Technology (PRHLT) research group. The idea is to provide users with easy to use tools to convert interactive translation and transcription feasible tasks. The assisted service is provided by remote servers with CAT or CATTI capabilities. The interface supplies the user with tools for efficient local edition: deletion, insertion and substitution.Ocampo Sepúlveda, JC. (2009). Implementation of a Human-Computer Interface for Computer Assisted Translation and Handwritten Text Recognition. http://hdl.handle.net/10251/14318Archivo delegad

    Machine Translation and the Evaluation of Its Quality

    Get PDF
    Machine translation has already become part of our everyday life. This chapter gives an overview of machine translation approaches. Statistical machine translation was a dominant approach over the past 20 years. It brought many cases of practical use. It is described in more detail in this chapter. Statistical machine translation is not equally successful for all language pairs. Highly inflectional languages are hard to process, especially as target languages. As statistical machine translation has almost reached the limits of its capacity, neural machine translation is becoming the technology of the future. This chapter also describes the evaluation of machine translation quality. It covers manual and automatic evaluations. Traditional and recently proposed metrics for automatic machine translation evaluation are described. Human translation still provides the best translation quality, but it is, in general, time-consuming and expensive. Integration of human and machine translation is a promising workflow for the future. Machine translation will not replace human translation, but it can serve as a tool to increase productivity in the translation process
    corecore