4,280 research outputs found

    Human synthetic lethal inference as potential anti-cancer target gene detection

    Get PDF
    Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates./nConclusions: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology

    Identifying therapeutic targets in glioma using integrated network analysis

    Get PDF
    Gliomas are the most common brain tumours in adult population with rapid progression and poor prognosis. Survival among the patients diagnosed with the most aggressive histopathological subtype of gliomas, the glioblastoma, is a mere 12.6 months given the current standard of care. While glioblastomas mostly occur in people over 60, the lower-grade gliomas afflict themselves upon individuals in their third and fourth decades of life. Collectively, the gliomas are one of the major causes of cancer-related death in individuals under fortyin the UK. Over the past twenty years, little has changed in the standard of glioma treatment and the disease has remained incurable. This study focuses on identifying potential therapeutic targets in gliomasusing systems-level approaches and large-scale data integration.I used publicly available transcriptomic data to identify gene co-expression networks associated with the progression of IDH1-mutant 1p/19q euploid astrocytomas from grade II to grade III and high-lighted hub-genes of these networks, which could be targeted to modulate their biological function. I also studied the changes in co-expression patterns between grade II and grade III gliomas and identified a cluster of genes with differential co-expression in different disease states (module M2). By data integration and adaptation of reverse-engineering methods, I elucidated master regulators of the module M2. I then sought to counteract the regulatory activity by using drug-induced gene expression dataset to find compounds inducing gene expression in the opposite direction of the disease signature. I proposed resveratrol as a potentially disease modifying compound, which when administered to patients with a low-grade disease could potentially delay glioma progression.Finally, I appliedanensemble-learning algorithm on a large-scale loss-of-function viability screen in cancer cell-lines with different genetic backgrounds to identify gene dependencies associated with chromosomal copy-number losses common intheglioblastomas. I propose five novel target predictions to be validated in future experiments.Open acces

    Computational approaches to identify genetic interactions for cancer therapeutics

    Get PDF
    The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Here we describe how genetic interactions are being therapeutically exploited to identify novel targeted treatments for cancer. We discuss the current methodologies that use ‘omics data to identify genetic interactions, in particular focusing on synthetic sickness lethality (SSL) and synthetic dosage lethality (SDL). We describe the experimen- tal and computational approaches undertaken both in humans and model organisms to identify these interac- tions. Finally we discuss some of the identified targets with licensed drugs, inhibitors in clinical trials or with compounds under development

    An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

    Get PDF
    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing

    Proposal for a new therapy for drug-resistant malaria using Plasmodium synthetic lethality inference

    Get PDF
    AbstractMany antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast–human–Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes
    corecore