5,200 research outputs found

    Bags of Affine Subspaces for Robust Object Tracking

    Full text link
    We propose an adaptive tracking algorithm where the object is modelled as a continuously updated bag of affine subspaces, with each subspace constructed from the object's appearance over several consecutive frames. In contrast to linear subspaces, affine subspaces explicitly model the origin of subspaces. Furthermore, instead of using a brittle point-to-subspace distance during the search for the object in a new frame, we propose to use a subspace-to-subspace distance by representing candidate image areas also as affine subspaces. Distances between subspaces are then obtained by exploiting the non-Euclidean geometry of Grassmann manifolds. Experiments on challenging videos (containing object occlusions, deformations, as well as variations in pose and illumination) indicate that the proposed method achieves higher tracking accuracy than several recent discriminative trackers.Comment: in International Conference on Digital Image Computing: Techniques and Applications, 201

    End-to-End Localization and Ranking for Relative Attributes

    Full text link
    We propose an end-to-end deep convolutional network to simultaneously localize and rank relative visual attributes, given only weakly-supervised pairwise image comparisons. Unlike previous methods, our network jointly learns the attribute's features, localization, and ranker. The localization module of our network discovers the most informative image region for the attribute, which is then used by the ranking module to learn a ranking model of the attribute. Our end-to-end framework also significantly speeds up processing and is much faster than previous methods. We show state-of-the-art ranking results on various relative attribute datasets, and our qualitative localization results clearly demonstrate our network's ability to learn meaningful image patches.Comment: Appears in European Conference on Computer Vision (ECCV), 201

    Efficient 3D object recognition via geometric information preservation

    Get PDF
    © 2019 Elsevier Ltd Accurate 3D object recognition and 6-DOF pose estimation have been pervasively applied to a variety of applications, such as unmanned warehouse, cooperative robots, and manufacturing industry. How to extract a robust and representative feature from the point clouds is an inevitable and important issue. In this paper, an unsupervised feature learning network is introduced to extract 3D keypoint features from point clouds directly, rather than transforming point clouds to voxel grids or projected RGB images, which saves computational time while preserving the object geometric information as well. Specifically, the proposed network features in a stacked point feature encoder, which can stack the local discriminative features within its neighborhoods to the original point-wise feature counterparts. The main framework consists of both offline training phase and online testing phase. In the offline training phase, the stacked point feature encoder is trained first and then generate feature database of all keypoints, which are sampled from synthetic point clouds of multiple model views. In the online testing phase, each feature extracted from the unknown testing scene is matched among the database by using the K-D tree voting strategy. Afterwards, the matching results are achieved by using the hypothesis & verification strategy. The proposed method is extensively evaluated on four public datasets and the results show that ours deliver comparable or even superior performances than the state-of-the-arts in terms of F1-score, Average of the 3D distance (ADD) and Recognition rate
    corecore