2,017 research outputs found

    Anomaly Detection from Low-dimensional Latent Manifolds with Home Environmental Sensors

    Get PDF
    Human Activity Recognition poses a significant challenge within Active and Assisted Living (AAL) systems, relying extensively on ubiquitous environmental sensor-based acquisition devices to detect user situations in their daily living. Environmental measurement systems deployed indoors yield multiparametric data in heterogeneous formats, which presents a challenge for developing Machine Learning-based AAL models. We hypothesized that anomaly detection algorithms could be effectively employed to create data-driven models for monitoring home environments and that the complex multiparametric indoor measurements can often be represented by a relatively small number of latent variables generated through Manifold Learning (MnL) techniques. We examined both linear (Principal Component Analysis) and non-linear (AutoEncoders) techniques for generating these latent spaces and the utility of core domain detection techniques for identifying anomalies within the resulting low-dimensional manifolds. We benchmarked this approach using three publicly available datasets (hh105, Aruba, and Tulum) and one proprietary dataset (Elioth) for home environmental monitoring. Our results demonstrated the following key findings: (a) Nonlinear manifold estimation techniques offer significant advantages in retrieving latent variables when compared to linear techniques; (b) The quality of the reconstruction of the original multidimensional recordings serves as an acceptable indicator of the quality of the generated latent spaces; (c) Domain detection identifies regions of normality consistent with typical individual activities in these spaces; And (d) the system effectively detects deviations from typical activity patterns and labels anomalies. This study lays the groundwork for further exploration of enhanced methods for extracting information from MnL data models and their application within the AAL and possibly other sectors

    Unsupervised Human Activity Recognition Using the Clustering Approach: A Review

    Get PDF
    Currently, many applications have emerged from the implementation of softwaredevelopment and hardware use, known as the Internet of things. One of the most importantapplication areas of this type of technology is in health care. Various applications arise daily inorder to improve the quality of life and to promote an improvement in the treatments of patients athome that suffer from different pathologies. That is why there has emerged a line of work of greatinterest, focused on the study and analysis of daily life activities, on the use of different data analysistechniques to identify and to help manage this type of patient. This article shows the result of thesystematic review of the literature on the use of the Clustering method, which is one of the mostused techniques in the analysis of unsupervised data applied to activities of daily living, as well asthe description of variables of high importance as a year of publication, type of article, most usedalgorithms, types of dataset used, and metrics implemented. These data will allow the reader tolocate the recent results of the application of this technique to a particular area of knowledg

    Wavelet-based filtration procedure for denoising the predicted CO2 waveforms in smart home within the Internet of Things

    Get PDF
    The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.Web of Science203art. no. 62

    Novel proposal for prediction of CO2 course and occupancy recognition in Intelligent Buildings within IoT

    Get PDF
    Many direct and indirect methods, processes, and sensors available on the market today are used to monitor the occupancy of selected Intelligent Building (IB) premises and the living activities of IB residents. By recognizing the occupancy of individual spaces in IB, IB can be optimally automated in conjunction with energy savings. This article proposes a novel method of indirect occupancy monitoring using CO2, temperature, and relative humidity measured by means of standard operating measurements using the KNX (Konnex (standard EN 50090, ISO/IEC 14543)) technology to monitor laboratory room occupancy in an intelligent building within the Internet of Things (IoT). The article further describes the design and creation of a Software (SW) tool for ensuring connectivity of the KNX technology and the IoT IBM Watson platform in real-time for storing and visualization of the values measured using a Message Queuing Telemetry Transport (MQTT) protocol and data storage into a CouchDB type database. As part of the proposed occupancy determination method, the prediction of the course of CO2 concentration from the measured temperature and relative humidity values were performed using mathematical methods of Linear Regression, Neural Networks, and Random Tree (using IBM SPSS Modeler) with an accuracy higher than 90%. To increase the accuracy of the prediction, the application of suppression of additive noise from the CO2 signal predicted by CO2 using the Least mean squares (LMS) algorithm in adaptive filtering (AF) method was used within the newly designed method. In selected experiments, the prediction accuracy with LMS adaptive filtration was better than 95%.Web of Science1223art. no. 454

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Inferring Transportation Mode and Human Activity from Mobile Sensing in Daily Life

    Get PDF
    In this paper, we focus on simultaneous inference of transportation modes and human activities in daily life via modelling and inference from multivariate time series data, which are streamed from off-the- shelf mobile sensors (e.g. embedded in smartphones) in real-world dynamic environments. The transportation mode will be inferred from the structured hierarchical contexts associated with human activities. Through our mobile context recognition system, an ac- curate and robust solution can be obtained to infer transportation mode, human activity and their associated contexts (e.g. whether the user is in moving or stationary environment) simultaneously. There are many challenges in analysing and modelling human mobility patterns within urban areas due to the ever-changing en- vironments of the mobile users. For instance, a user could stay at a particular location and then travel to various destinations depend- ing on the tasks they carry within a day. Consequently, there is a need to reduce the reliance on location-based sensors (e.g. GPS), since they consume a significant amount of energy on smart de- vices, for the purpose of intelligent mobile sensing (i.e. automatic inference of transportation mode, human activity and associated contexts). Nevertheless, our system is capable of outperforming the simplistic approach that only considers independent classifications of multiple context label sets on data streamed from low energy sensors
    corecore