44,155 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Organs on chip approach: A tool to evaluate cancer-immune cells interactions

    Get PDF
    In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a micro uidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from ‘wild type’ donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative con rmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems

    Emergence of a stable cortical map for neuroprosthetic control.

    Get PDF
    Cortical control of neuroprosthetic devices is known to require neuronal adaptations. It remains unclear whether a stable cortical representation for prosthetic function can be stored and recalled in a manner that mimics our natural recall of motor skills. Especially in light of the mixed evidence for a stationary neuron-behavior relationship in cortical motor areas, understanding this relationship during long-term neuroprosthetic control can elucidate principles of neural plasticity as well as improve prosthetic function. Here, we paired stable recordings from ensembles of primary motor cortex neurons in macaque monkeys with a constant decoder that transforms neural activity to prosthetic movements. Proficient control was closely linked to the emergence of a surprisingly stable pattern of ensemble activity, indicating that the motor cortex can consolidate a neural representation for prosthetic control in the presence of a constant decoder. The importance of such a cortical map was evident in that small perturbations to either the size of the neural ensemble or to the decoder could reversibly disrupt function. Moreover, once a cortical map became consolidated, a second map could be learned and stored. Thus, long-term use of a neuroprosthetic device is associated with the formation of a cortical map for prosthetic function that is stable across time, readily recalled, resistant to interference, and resembles a putative memory engram

    Two brains in action: joint-action coding in the primate frontal cortex

    Get PDF
    Daily life often requires the coordination of our actions with those of another partner. After sixty years (1968-2018) of behavioral neurophysiology of motor control, the neural mechanisms which allow such coordination in primates are unknown. We studied this issue by recording cell activity simultaneously from dorsal premotor cortex (PMd) of two male interacting monkeys trained to coordinate their hand forces to achieve a common goal. We found a population of 'joint-action cells' that discharged preferentially when monkeys cooperated in the task. This modulation was predictive in nature, since in most cells neural activity led in time the changes of the "own" and of the "other" behavior. These neurons encoded the joint-performance more accurately than 'canonical action-related cells', activated by the action per se, regardless of the individual vs. interactive context. A decoding of joint-action was obtained by combining the two brains activities, using cells with directional properties distinguished from those associated to the 'solo' behaviors. Action observation-related activity studied when one monkey observed the consequences of the partner's behavior, i.e. the cursor's motion on the screen, did not sharpen the accuracy of 'joint-action cells' representation, suggesting that it plays no major role in encoding joint-action. When monkeys performed with a non-interactive partner, such as a computer, 'joint-action cells' representation of the "other" (non-cooperative) behavior was significantly degraded. These findings provide evidence of how premotor neurons integrate the time-varying representation of the self-action with that of a co-actor, thus offering a neural substrate for successful visuo-motor coordination between individuals.SIGNIFICANT STATEMENTThe neural bases of inter-subject motor coordination were studied by recording cell activity simultaneously from the frontal cortex of two interacting monkeys, trained to coordinate their hand forces to achieve a common goal. We found a new class of cells, preferentially active when the monkeys cooperated, rather than when the same action was performed individually. These 'joint-action neurons' offered a neural representation of joint-behaviors by far more accurate than that provided by the canonical action-related cells, modulated by the action per se regardless of the individual/interactive context. A neural representation of joint-performance was obtained by combining the activity recorded from the two brains. Our findings offer the first evidence concerning neural mechanisms subtending interactive visuo-motor coordination between co-acting agents
    • …
    corecore