387,066 research outputs found

    On Nietzsche’s Criticism Towards Common Sense Realism in Human, All Too Human I, 11

    Get PDF
    The paper explores Nietzsche's observations on language in Human, All Too Human I, 11; reflects on the anti-realist position that Nietzsche defends in that aphorism; and focuses on the role she plays in his later investigation on Western culture and its anthropology. As will be argued, Nietzsche's criticism towards common sense realism is consistent with some pragmatist epistemologies developed during the late-nineteenth and early-twentieth century. This treat of " timeliness " does not limit Nietzsche's originality on the topic. In fact, the idea that philosophy can contrast the metaphysical commitment of common sense can be seen as the theoretical tool that allows Nietzsche to operate on the development of European culture and society

    Do (and say) as I say: Linguistic adaptation in human-computer dialogs

    Get PDF
    © Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. This article has been made available through the Brunel Open Access Publishing Fund.There is strong research evidence showing that people naturally align to each other’s vocabulary, sentence structure, and acoustic features in dialog, yet little is known about how the alignment mechanism operates in the interaction between users and computer systems let alone how it may be exploited to improve the efficiency of the interaction. This article provides an account of lexical alignment in human–computer dialogs, based on empirical data collected in a simulated human–computer interaction scenario. The results indicate that alignment is present, resulting in the gradual reduction and stabilization of the vocabulary-in-use, and that it is also reciprocal. Further, the results suggest that when system and user errors occur, the development of alignment is temporarily disrupted and users tend to introduce novel words to the dialog. The results also indicate that alignment in human–computer interaction may have a strong strategic component and is used as a resource to compensate for less optimal (visually impoverished) interaction conditions. Moreover, lower alignment is associated with less successful interaction, as measured by user perceptions. The article distills the results of the study into design recommendations for human–computer dialog systems and uses them to outline a model of dialog management that supports and exploits alignment through mechanisms for in-use adaptation of the system’s grammar and lexicon

    Spoken Language Intent Detection using Confusion2Vec

    Full text link
    Decoding speaker's intent is a crucial part of spoken language understanding (SLU). The presence of noise or errors in the text transcriptions, in real life scenarios make the task more challenging. In this paper, we address the spoken language intent detection under noisy conditions imposed by automatic speech recognition (ASR) systems. We propose to employ confusion2vec word feature representation to compensate for the errors made by ASR and to increase the robustness of the SLU system. The confusion2vec, motivated from human speech production and perception, models acoustic relationships between words in addition to the semantic and syntactic relations of words in human language. We hypothesize that ASR often makes errors relating to acoustically similar words, and the confusion2vec with inherent model of acoustic relationships between words is able to compensate for the errors. We demonstrate through experiments on the ATIS benchmark dataset, the robustness of the proposed model to achieve state-of-the-art results under noisy ASR conditions. Our system reduces classification error rate (CER) by 20.84% and improves robustness by 37.48% (lower CER degradation) relative to the previous state-of-the-art going from clean to noisy transcripts. Improvements are also demonstrated when training the intent detection models on noisy transcripts

    More than skin deep: body representation beyond primary somatosensory cortex

    Get PDF
    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond somatosensation. Somatoperception refers to the process of perceiving the body itself, and particularly of ensuring somatic perceptual constancy. We review three key elements of somatoperception: (a) remapping information from the body surface into an egocentric reference frame (b) exteroceptive perception of objects in the external world through their contact with the body and (c) interoceptive percepts about the nature and state of the body itself. Somatorepresentation, in contrast, refers to the essentially cognitive process of constructing semantic knowledge and attitudes about the body, including: (d) lexical-semantic knowledge about bodies generally and one’s own body specifically, (e) configural knowledge about the structure of bodies, (f) emotions and attitudes directed towards one’s own body, and (g) the link between physical body and psychological self. We review a wide range of neuropsychological, neuroimaging and neurophysiological data to explore the dissociation between these different aspects of higher somatosensory function

    A cross-linguistic database of phonetic transcription systems

    Get PDF
    Contrary to what non-practitioners might expect, the systems of phonetic notation used by linguists are highly idiosyncratic. Not only do various linguistic subfields disagree on the specific symbols they use to denote the speech sounds of languages, but also in large databases of sound inventories considerable variation can be found. Inspired by recent efforts to link cross-linguistic data with help of reference catalogues (Glottolog, Concepticon) across different resources, we present initial efforts to link different phonetic notation systems to a catalogue of speech sounds. This is achieved with the help of a database accompanied by a software framework that uses a limited but easily extendable set of non-binary feature values to allow for quick and convenient registration of different transcription systems, while at the same time linking to additional datasets with restricted inventories. Linking different transcription systems enables us to conveniently translate between different phonetic transcription systems, while linking sounds to databases allows users quick access to various kinds of metadata, including feature values, statistics on phoneme inventories, and information on prosody and sound classes. In order to prove the feasibility of this enterprise, we supplement an initial version of our cross-linguistic database of phonetic transcription systems (CLTS), which currently registers five transcription systems and links to fifteen datasets, as well as a web application, which permits users to conveniently test the power of the automatic translation across transcription systems
    corecore