260 research outputs found

    Machine Learning Methods for Image Analysis in Medical Applications, from Alzheimer\u27s Disease, Brain Tumors, to Assisted Living

    Get PDF
    Healthcare has progressed greatly nowadays owing to technological advances, where machine learning plays an important role in processing and analyzing a large amount of medical data. This thesis investigates four healthcare-related issues (Alzheimer\u27s disease detection, glioma classification, human fall detection, and obstacle avoidance in prosthetic vision), where the underlying methodologies are associated with machine learning and computer vision. For Alzheimer’s disease (AD) diagnosis, apart from symptoms of patients, Magnetic Resonance Images (MRIs) also play an important role. Inspired by the success of deep learning, a new multi-stream multi-scale Convolutional Neural Network (CNN) architecture is proposed for AD detection from MRIs, where AD features are characterized in both the tissue level and the scale level for improved feature learning. Good classification performance is obtained for AD/NC (normal control) classification with test accuracy 94.74%. In glioma subtype classification, biopsies are usually needed for determining different molecular-based glioma subtypes. We investigate non-invasive glioma subtype prediction from MRIs by using deep learning. A 2D multi-stream CNN architecture is used to learn the features of gliomas from multi-modal MRIs, where the training dataset is enlarged with synthetic brain MRIs generated by pairwise Generative Adversarial Networks (GANs). Test accuracy 88.82% has been achieved for IDH mutation (a molecular-based subtype) prediction. A new deep semi-supervised learning method is also proposed to tackle the problem of missing molecular-related labels in training datasets for improving the performance of glioma classification. In other two applications, we also address video-based human fall detection by using co-saliency-enhanced Recurrent Convolutional Networks (RCNs), as well as obstacle avoidance in prosthetic vision by characterizing obstacle-related video features using a Spiking Neural Network (SNN). These investigations can benefit future research, where artificial intelligence/deep learning may open a new way for real medical applications

    Automatic Fall Risk Detection based on Imbalanced Data

    Get PDF
    In recent years, the declining birthrate and aging population have gradually brought countries into an ageing society. Regarding accidents that occur amongst the elderly, falls are an essential problem that quickly causes indirect physical loss. In this paper, we propose a pose estimation-based fall detection algorithm to detect fall risks. We use body ratio, acceleration and deflection as key features instead of using the body keypoints coordinates. Since fall data is rare in real-world situations, we train and evaluate our approach in a highly imbalanced data setting. We assess not only different imbalanced data handling methods but also different machine learning algorithms. After oversampling on our training data, the K-Nearest Neighbors (KNN) algorithm achieves the best performance. The F1 scores for three different classes, Normal, Fall, and Lying, are 1.00, 0.85 and 0.96, which is comparable to previous research. The experiment shows that our approach is more interpretable with the key feature from skeleton information. Moreover, it can apply in multi-people scenarios and has robustness on medium occlusion

    Tensor Representations for Object Classification and Detection

    Get PDF
    A key problem in object recognition is finding a suitable object representation. For historical and computational reasons, vector descriptions that encode particular statistical properties of the data have been broadly applied. However, employing tensor representation can describe the interactions of multiple factors inherent to image formation. One of the most convenient uses for tensors is to represent complex objects in order to build a discriminative description. Thus thesis has several main contributions, focusing on visual data detection (e.g. of heads or pedestrians) and classification (e.g. of head or human body orientation) in still images and on machine learning techniques to analyse tensor data. These applications are among the most studied in computer vision and are typically formulated as binary or multi-class classification problems. The applicative context of this thesis is the video surveillance, where classification and detection tasks can be very hard, due to the scarce resolution and the noise characterising sensor data. Therefore, the main goal in that context is to design algorithms that can characterise different objects of interest, especially when immersed in a cluttered background and captured at low resolution. In the different amount of machine learning approaches, the ensemble-of-classifiers demonstrated to reach excellent classification accuracy, good generalisation ability, and robustness of noisy data. For these reasons, some approaches in that class have been adopted as basic machine classification frameworks to build robust classifiers and detectors. Moreover, also kernel machines has been exploited for classification purposes, since they represent a natural learning framework for tensors

    An automatic wearable multi-sensor based gait analysis system for older adults.

    Get PDF
    Gait abnormalities in older adults are very common in clinical practice. They lead to serious adverse consequences such as falls and injury resulting in increased care cost. There is therefore a national imperative to address this challenge. Currently gait assessment is done using standardized clinical tools dependent on subjective evaluation. More objective gold standard methods (motion capture systems such as Qualisys and Vicon) to analyse gait rely on access to expensive complex equipment based in gait laboratories. These are not widely available for several reasons including a scarcity of equipment, need for technical staff, need for patients to attend in person, complicated time consuming procedures and overall expense. To broaden the use of accurate quantitative gait monitoring and assessment, the major goal of this thesis is to develop an affordable automatic gait analysis system that will provide comprehensive gait information and allow use in clinic or at home. It will also be able to quantify and visualize gait parameters, identify gait variables and changes, monitor abnormal gait patterns of older people in order to reduce the potential for falling and support falls risk management. A research program based on conducting experiments on volunteers is developed in collaboration with other researchers in Bournemouth University, The Royal Bournemouth Hospital and care homes. This thesis consists of five different studies toward addressing our major goal. Firstly, a study on the effects on sensor output from an Inertial Measurement Unit (IMU) attached to different anatomical foot locations. Placing an IMU over the bony prominence of the first cuboid bone is the best place as it delivers the most accurate data. Secondly, an automatic gait feature extraction method for analysing spatiotemporal gait features which shows that it is possible to extract gait features automatically outside of a gait laboratory. Thirdly, user friendly and easy to interpret visualization approaches are proposed to demonstrate real time spatiotemporal gait information. Four proposed approaches have the potential of helping professionals detect and interpret gait asymmetry. Fourthly, a validation study of spatiotemporal IMU extracted features compared with gold standard Motion Capture System and Treadmill measurements in young and older adults is conducted. The results obtained from three experimental conditions demonstrate that our IMU gait extracted features are highly valid for spatiotemporal gait variables in young and older adults. In the last study, an evaluation system using Procrustes and Euclidean distance matrix analysis is proposed to provide a comprehensive interpretation of shape and form differences between individual gaits. The results show that older gaits are distinguishable from young gaits. A pictorial and numerical system is proposed which indicates whether the assessed gait is normal or abnormal depending on their total feature values. This offers several advantages: 1) it is user friendly and is easy to set up and implement; 2) it does not require complex equipment with segmentation of body parts; 3) it is relatively inexpensive and therefore increases its affordability decreasing health inequality; and 4) its versatility increases its usability at home supporting inclusivity of patients who are home bound. A digital transformation strategy framework is proposed where stakeholders such as patients, health care professionals and industry partners can collaborate through development of new technologies, value creation, structural change, affordability and sustainability to improve the diagnosis and treatment of gait abnormalities

    Statistical Medial Model dor Cardiac Segmentation and Morphometry

    Get PDF
    In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular shape features can help identify diseases; shape features can help match different instances of anatomical structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical structure\u27s shape can help segment a new example of this structure in noisy, low-contrast images. A good shape representation helps to improve the performance of the above techniques. The overall goal of the proposed research is to develop and evaluate methods for representing shapes of anatomical structures. The medial model is a shape representation method that models a 3D object by explicitly defining its skeleton (medial axis) and deriving the object\u27s boundary via inverse-skeletonization . This model represents shape compactly, and naturally expresses descriptive global shape features like thickening , bending , and elongation . However, its application in biomedical image analysis has been limited, and it has not yet been applied to the heart, which has a complex shape. In this thesis, I focus on developing efficient methods to construct the medial model, and apply it to solve biomedical image analysis problems. I propose a new 3D medial model which can be efficiently applied to complex shapes. The proposed medial model closely approximates the medial geometry along medial edge curves and medial branching curves by soft-penalty optimization and local correction. I further develop a scheme to perform model-based segmentation using a statistical medial model which incorporates prior shape and appearance information. The proposed medial models are applied to a series of image analysis tasks. The 2D medial model is applied to the corpus callosum which results in an improved alignment of the patterns of commissural connectivity compared to a volumetric registration method. The 3D medial model is used to describe the myocardium of the left and right ventricles, which provides detailed thickness maps characterizing different disease states. The model-based myocardium segmentation scheme is tested in a heterogeneous adult MRI dataset. Our segmentation experiments demonstrate that the statistical medial model can accurately segment the ventricular myocardium and provide useful parameters to characterize heart function

    Faculty Publications and Creative Works 2003

    Get PDF
    Faculty Publications & Creative Works is an annual compendium of scholarly and creative activities of University of New Mexico faculty during the noted calendar year. It serves to illustrate the robust and active intellectual pursuits conducted by the faculty in support of teaching and research at UNM
    • …
    corecore