14,548 research outputs found

    A comparison of head and manual control for a position-control pursuit tracking task

    Get PDF
    Head control was compared with manual control in a pursuit tracking task involving proportional controlled-element dynamics. An integrated control/display system was used to explore tracking effectiveness in horizontal and vertical axes tracked singly and concurrently. Compared with manual tracking, head tracking resulted in a 50 percent greater rms error score, lower pilot gain, greater high-frequency phase lag and greater low-frequency remnant. These differences were statistically significant, but differences between horizontal- and vertical-axis tracking and between 1- and 2-axis tracking were generally small and not highly significant. Manual tracking results were matched with the optimal control model using pilot-related parameters typical of those found in previous manual control studies. Head tracking performance was predicted with good accuracy using the manual tracking model plus a model for head/neck response dynamics obtained from the literature

    Characterization of Pilot Technique

    Get PDF
    Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed

    Does the motor system need intermittent control?

    Get PDF
    Explanation of motor control is dominated by continuous neurophysiological pathways (e.g. trans-cortical, spinal) and the continuous control paradigm. Using new theoretical development, methodology and evidence, we propose intermittent control, which incorporates a serial ballistic process within the main feedback loop, provides a more general and more accurate paradigm necessary to explain attributes highly advantageous for competitive survival and performance

    Development of Biomimetic-Based Controller Design Methods for Advanced Energy Systems

    Get PDF
    A biologically inspired optimal control strategy, denoted as BIO-CS, is proposed for advanced energy systems applications. This strategy combines the ant\u27s rule of pursuit idea with multi-agent and optimal control concepts. The BIO-CS algorithm employs gradient-based optimal control solvers for the intermediate problems associated with the leader-follower agents\u27 local interactions. The developed BIO-CS is integrated with an Artificial Neural Network (ANN)-based adaptive component for further improvement of the overall framework. In particular, the ANN component captures the mismatch between the controller and the plant models by using a single-hidden-layer technique with online learning capabilities to augment the baseline BIO-CS control laws. The resulting approach is a unique combination of biomimetic control and data-driven methods that provides optimal solutions for dynamic systems.;The applicability of the proposed framework is illustrated via an Integrated Gasification Combined Cycle (IGCC) process with carbon capture as an advanced energy system example. Specifically, a multivariable control structure associated with a subsystem of the IGCC plant simulation in DYNSIMRTM software platform is addressed. The proposed control laws are derived in MATLAB RTM environment, while the plant models are built in DYNSIM RTM, and a previously developed MATLABRTM-DYNSIM RTM link is employed for implementation purposes. The proposed integrated approach improves the overall performance of the process up to 85% in terms of reducing the output tracking error when compared to stand-alone BIO-CS and Proportional-Integral (PI) controller implementations, resulting in faster setpoint tracking.;Other applications of BIO-CS addressed include: i) a nonlinear fermentation process to produce ethanol; and ii) a transfer function model derived from the cyber-physical fuel cell-gas turbine hybrid power system that is part of the Hybrid Performance (HYPER) project at the National Energy Technology Laboratory (NETL). Other theoretical developments in this work correspond to the integration of the BIO-CS approach with Multi-Agent Optimization (MAO) techniques and casting BIO-CS as a Model Predictive Controller (MPC). These developments are demonstrated by revisiting the fermentation process example. The proposed biologically-inspired approaches provide a promising alternative for advanced control of energy systems of the future

    Intention Tremor and Deficits of Sensory Feedback Control in Multiple Sclerosis: a Pilot Study

    Get PDF
    Background Intention tremor and dysmetria are leading causes of upper extremity disability in Multiple Sclerosis (MS). The development of effective therapies to reduce tremor and dysmetria is hampered by insufficient understanding of how the distributed, multi-focal lesions associated with MS impact sensorimotor control in the brain. Here we describe a systems-level approach to characterizing sensorimotor control and use this approach to examine how sensory and motor processes are differentially impacted by MS. Methods Eight subjects with MS and eight age- and gender-matched healthy control subjects performed visually-guided flexion/extension tasks about the elbow to characterize a sensory feedback control model that includes three sensory feedback pathways (one for vision, another for proprioception and a third providing an internal prediction of the sensory consequences of action). The model allows us to characterize impairments in sensory feedback control that contributed to each MS subject’s tremor. Results Models derived from MS subject performance differed from those obtained for control subjects in two ways. First, subjects with MS exhibited markedly increased visual feedback delays, which were uncompensated by internal adaptive mechanisms; stabilization performance in individuals with the longest delays differed most from control subject performance. Second, subjects with MS exhibited misestimates of arm dynamics in a way that was correlated with tremor power. Subject-specific models accurately predicted kinematic performance in a reach and hold task for neurologically-intact control subjects while simulated performance of MS patients had shorter movement intervals and larger endpoint errors than actual subject responses. This difference between simulated and actual performance is consistent with a strategic compensatory trade-off of movement speed for endpoint accuracy. Conclusions Our results suggest that tremor and dysmetria may be caused by limitations in the brain’s ability to adapt sensory feedback mechanisms to compensate for increases in visual information processing time, as well as by errors in compensatory adaptations of internal estimates of arm dynamics

    Guidance and control of an autonomous underwater vehicle

    Get PDF
    Merged with duplicate record 10026.1/856 on 07.03.2017 by CS (TIS)A cooperative project between the Universities of Plymouth and Cranfield was aimed at designing and developing an autonomous underwater vehicle named Hammerhead. The work presented herein is to formulate an advance guidance and control system and to implement it in the Hammerhead. This involves the description of Hammerhead hardware from a control system perspective. In addition to the control system, an intelligent navigation scheme and a state of the art vision system is also developed. However, the development of these submodules is out of the scope of this thesis. To model an underwater vehicle, the traditional way is to acquire painstaking mathematical models based on laws of physics and then simplify and linearise the models to some operating point. One of the principal novelties of this research is the use of system identification techniques on actual vehicle data obtained from full scale in water experiments. Two new guidance mechanisms have also been formulated for cruising type vehicles. The first is a modification of the proportional navigation guidance for missiles whilst the other is a hybrid law which is a combination of several guidance strategies employed during different phases of the Right. In addition to the modelling process and guidance systems, a number of robust control methodologies have been conceived for Hammerhead. A discrete time linear quadratic Gaussian with loop transfer recovery based autopilot is formulated and integrated with the conventional and more advance guidance laws proposed. A model predictive controller (MPC) has also been devised which is constructed using artificial intelligence techniques such as genetic algorithms (GA) and fuzzy logic. A GA is employed as an online optimization routine whilst fuzzy logic has been exploited as an objective function in an MPC framework. The GA-MPC autopilot has been implemented in Hammerhead in real time and results demonstrate excellent robustness despite the presence of disturbances and ever present modelling uncertainty. To the author's knowledge, this is the first successful application of a GA in real time optimization for controller tuning in the marine sector and thus the thesis makes an extremely novel and useful contribution to control system design in general. The controllers are also integrated with the proposed guidance laws and is also considered to be an invaluable contribution to knowledge. Moreover, the autopilots are used in conjunction with a vision based altitude information sensor and simulation results demonstrate the efficacy of the controllers to cope with uncertain altitude demands.J&S MARINE LTD., QINETIQ, SUBSEA 7 AND SOUTH WEST WATER PL

    Some data processing requirements for precision Nap-Of-the-Earth (NOE) guidance and control of rotorcraft

    Get PDF
    Nap-Of-the-Earth (NOE) flight in a conventional helicopter is extremely taxing for two pilots under visual conditions. Developing a single pilot all-weather NOE capability will require a fully automatic NOE navigation and flight control capability for which innovative guidance and control concepts were examined. Constrained time-optimality provides a validated criterion for automatically controlled NOE maneuvers if the pilot is to have confidence in the automated maneuvering technique. A second focus was to organize the storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan. A method is presented for using pre-flight geodetic parameter identification to establish guidance commands for planned flight profiles and alternates. A method is then suggested for interpolating this guidance command information with the aid of forward and side looking sensors within the resolution of the stored data base, enriching the data content with real-time display, guidance, and control purposes. A third focus defined a class of automatic anticipative guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles and to address the effects of processing delays in digital guidance and control system candidates. The results of this three-fold research effort offer promising alternatives designed to gain pilot acceptance for automatic guidance and control of rotorcraft in NOE operations

    Optimized adaptive MPC for lateral control of autonomous vehicles

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksAutonomous vehicles are the upcoming solution to most transportation problems such as safety, comfort and efficiency. The steering control is one of the main important tasks in achieving autonomous driving. Model predictive control (MPC) is among the fittest controllers for this task due to its optimal performance and ability to handle constraints. This paper proposes an adaptive MPC controller (AMPC) for the path tracking task, and an improved PSO algorithm for optimising the AMPC parameters. Parameter adaption is realised online using a lookup table approach. The propose AMPC performance is assessed and compared with the classic MPC and the Pure Pursuit controller through simulationsPeer ReviewedPostprint (author's final draft

    A study of manual control methodology with annotated bibliography

    Get PDF
    Manual control methodology - study with annotated bibliograph
    • …
    corecore