49 research outputs found

    Improving Situational Awareness in RoboFlag

    Get PDF
    Situational awareness in competitive games has started to attract increasing attention in the control community. It studies how a robot identifies, understands and predicts the significant factors around it, which is essential for effective decision making and performance in any complex and dynamic environment. In this thesis, we investigate the situational awareness problems in RoboFlag, a highly dynamic testbed that comprises a mixture of offense and defense games between two robotic teams. To improve situational awareness in RoboFlag, we want to solve two main problems. (1) Real-time position estimation given limited sensing capability. (2) Optimal decision-making strategy based on position estimation. Monte Carlo Localization (MCL), a statistical method based on particle representations of probability densities moving sequentially in discrete time, has been shown as an effective and time-efficient method for reliable position estimation, especially when the dynamics of the system and the environment are nonlinear and non-Gaussian, such as RoboFlag. In this thesis, a dynamic weight map, Hospitability Map (H-Map), that measures the ability of a target to move and maneuver at each location of the field, has been applied to MCL to enhance the efficiency and accuracy of MCL in resampling phase. Empirical results illustrate that H-Map based MCL method improves situational awareness in Roboflag by providing reliable position prediction and enhancing decisionmaking performance.</p

    Vehicle Motion Planning Using Stream Functions

    Get PDF
    Borrowing a concept from hydrodynamic analysis, this paper presents stream functions which satisfy Laplace's equation as a local-minima free method for producing potential-field based navigation functions in two dimensions. These functions generate smoother paths (i.e. more suited to aircraft-like vehicles) than previous methods. A method is developed for constructing analytic stream functions to produce arbitrary vehicle behaviors while avoiding obstacles, and an exact solution for the case of a single uniformly moving obstacle is presented. The effects of introducing multiple obstacles are discussed and current work in this direction is detailed. Experimental results generated on the Cornell RoboFlag testbed are presented and discussed, as well as related work applying these methods to path planning for unmanned air vehicles

    Supervisory Autonomous Control of Homogeneous Teams of Unmanned Ground Vehicles, with Application to the Multi-Autonomous Ground-Robotic International Challenge

    Get PDF
    There are many different proposed methods for Supervisory Control of semi-autonomous robots. There have also been numerous software simulations to determine how many robots can be successfully supervised by a single operator, a problem known as fan-out, but only a few studies have been conducted using actual robots. As evidenced by the MAGIC 2010 competition, there is increasing interest in amplifying human capacity by allowing one or a few operators to supervise a team of robotic agents. This interest provides motivation to perform a more in-depth evaluation of many autonomous/semiautonomous robots an operator can successfully supervise. The MAGIC competition allowed two human operators to supervise a team of robots in a complex search-and mapping operation. The MAGIC competition provided the best opportunity to date to study through practice the actual fan-out with multiple semi-autonomous robots. The current research provides a step forward in determining fan-out by offering an initial framework for testing multi-robot teams under supervisory control. One conclusion of this research is that the proposed framework is not complex or complete enough to provide conclusive data for determining fan-out. Initial testing using operators with limited training suggests that there is no obvious pattern to the operator interaction time with robots based on the number of robots and the complexity of the tasks. The initial hypothesis that, for a given task and robot there exists an optimal robot-to-operator efficiency ratio, could not be confirmed. Rather, the data suggests that the ability of the operator is a dominant factor in studies involving operators with limited training supervising small teams of robots. It is possible that, with more extensive training, operator times would become more closely related to the number of agents and the complexity of the tasks. The work described in this thesis proves an experimental framework and a preliminary data set for other researchers to critique and build upon. As the demand increases for agent-to-operator ratios greater than one, the need to expand upon research in this area will continue to grow

    Recent Research in Cooperative Control of Multivehicle Systems

    Get PDF
    This paper presents a survey of recent research in cooperative control of multivehicle systems, using a common mathematical framework to allow different methods to be described in a unified way. The survey has three primary parts: an overview of current applications of cooperative control, a summary of some of the key technical approaches that have been explored, and a description of some possible future directions for research. Specific technical areas that are discussed include formation control, cooperative tasking, spatiotemporal planning, and consensus

    Instant Messaging and Team Performance in a Simulated Command and Control Environment

    Full text link

    Mixed-initiative Multirobot Control in USAR

    Get PDF

    How to keep drivers engaged while supervising driving automation? A literature survey and categorization of six solution areas

    Get PDF
    This work aimed to organise recommendations for keeping people engaged during human supervision of driving automation, encouraging a safe and acceptable introduction of automated driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory was used to propose solution areas to human supervisory control problems of sustained attention. Driving and non-driving research examples were drawn to substantiate the solution areas. Automotive manufacturers might (1) avoid this supervisory role altogether, (2) reduce it in objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles such as with gamification and/or selection/training techniques, (5) support internal driver cognitive processes and mental models and/or (6) leverage externally situated information regarding relations between the driver, the driving task, and the driving environment. Second, a cross-domain literature survey of influential human-automation interaction research was conducted for how to keep engagement/attention in supervisory control. The solution areas (via numeric theme codes) were found to be reliably applied from independent rater categorisations of research recommendations. Areas (5) and (6) were addressed by around 70% or more of the studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 20% and 5%, respectively. The present contribution offers a guiding organisational framework towards improving human attention while supervising driving automation.submittedVersio

    Mixed-initiative multirobot control in USAR

    Get PDF
    corecore