95,422 research outputs found

    Model-based groupware solution for distributed real-time collaborative 4D planning via teamwork

    Get PDF
    Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    Making a financial time machine:a multitouch application to enable interactive 3-D visualization of distant savings goals

    Get PDF
    Financial planning and decision making for the general public continues to vex and perplex in equal measure. Whilst the tools presented by a typical desktop computer should make the task easier, the recent financial crisis confirms the increasing difficulty that people have in calculating the benefits of deferring consumption for future gains (i.e. Saving). We present an interactive concept demonstration for Microsoft SurfaceTM that tackles two of the key barriers to saving decision making. Firstly we show an interface that avoid the laborious writing down or inputting of data and instead embodies the cognitive decision of allocation of resources in a physical gesture based interface, where the scale of the investment or expenditure correlates with the scale of the gesture. Second we show how a fast-forward based animation can demonstrate the impact of small increments in savings to a long term savings goal in a strategy game-based, interactive format. The platform uses custom software (XNATM format) as opposed to the more usual WPFTM format found on Surface applications. This enables dynamic 3-D graphical icons to be used to maximize the interactive appeal of the interface. Demonstration and test trial feedback indicates that this platform can be adapted to suit the narrative of individual purchasing decisions to inform educate diverse user groups about the long term consequences of small financial decisions

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness ñ€“ Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Norm-based and commitment-driven agentification of the Internet of Things

    Get PDF
    There are no doubts that the Internet-of-Things (IoT) has conquered the ICT industry to the extent that many governments and organizations are already rolling out many anywhere,anytime online services that IoT sustains. However, like any emerging and disruptive technology, multiple obstacles are slowing down IoT practical adoption including the passive nature and privacy invasion of things. This paper examines how to empower things with necessary capabilities that would make them proactive and responsive. This means things can, for instance reach out to collaborative peers, (un)form dynamic communities when necessary, avoid malicious peers, and be “questioned” for their actions. To achieve such empowerment, this paper presents an approach for agentifying things using norms along with commitments that operationalize these norms. Both norms and commitments are specialized into social (i.e., application independent) and business (i.e., application dependent), respectively. Being proactive, things could violate commitments at run-time, which needs to be detected through monitoring. In this paper, thing agentification is illustrated with a case study about missing children and demonstrated with a testbed that uses different IoT-related technologies such as Eclipse Mosquitto broker and Message Queuing Telemetry Transport protocol. Some experiments conducted upon this testbed are also discussed
    • 

    corecore