135 research outputs found

    Deep Learning on Lie Groups for Skeleton-based Action Recognition

    Full text link
    In recent years, skeleton-based action recognition has become a popular 3D classification problem. State-of-the-art methods typically first represent each motion sequence as a high-dimensional trajectory on a Lie group with an additional dynamic time warping, and then shallowly learn favorable Lie group features. In this paper we incorporate the Lie group structure into a deep network architecture to learn more appropriate Lie group features for 3D action recognition. Within the network structure, we design rotation mapping layers to transform the input Lie group features into desirable ones, which are aligned better in the temporal domain. To reduce the high feature dimensionality, the architecture is equipped with rotation pooling layers for the elements on the Lie group. Furthermore, we propose a logarithm mapping layer to map the resulting manifold data into a tangent space that facilitates the application of regular output layers for the final classification. Evaluations of the proposed network for standard 3D human action recognition datasets clearly demonstrate its superiority over existing shallow Lie group feature learning methods as well as most conventional deep learning methods.Comment: Accepted to CVPR 201

    Complex Human Action Recognition in Live Videos Using Hybrid FR-DL Method

    Full text link
    Automated human action recognition is one of the most attractive and practical research fields in computer vision, in spite of its high computational costs. In such systems, the human action labelling is based on the appearance and patterns of the motions in the video sequences; however, the conventional methodologies and classic neural networks cannot use temporal information for action recognition prediction in the upcoming frames in a video sequence. On the other hand, the computational cost of the preprocessing stage is high. In this paper, we address challenges of the preprocessing phase, by an automated selection of representative frames among the input sequences. Furthermore, we extract the key features of the representative frame rather than the entire features. We propose a hybrid technique using background subtraction and HOG, followed by application of a deep neural network and skeletal modelling method. The combination of a CNN and the LSTM recursive network is considered for feature selection and maintaining the previous information, and finally, a Softmax-KNN classifier is used for labelling human activities. We name our model as Feature Reduction & Deep Learning based action recognition method, or FR-DL in short. To evaluate the proposed method, we use the UCF dataset for the benchmarking which is widely-used among researchers in action recognition research. The dataset includes 101 complicated activities in the wild. Experimental results show a significant improvement in terms of accuracy and speed in comparison with six state-of-the-art articles

    Take an Emotion Walk: Perceiving Emotions from Gaits Using Hierarchical Attention Pooling and Affective Mapping

    Full text link
    We present an autoencoder-based semi-supervised approach to classify perceived human emotions from walking styles obtained from videos or motion-captured data and represented as sequences of 3D poses. Given the motion on each joint in the pose at each time step extracted from 3D pose sequences, we hierarchically pool these joint motions in a bottom-up manner in the encoder, following the kinematic chains in the human body. We also constrain the latent embeddings of the encoder to contain the space of psychologically-motivated affective features underlying the gaits. We train the decoder to reconstruct the motions per joint per time step in a top-down manner from the latent embeddings. For the annotated data, we also train a classifier to map the latent embeddings to emotion labels. Our semi-supervised approach achieves a mean average precision of 0.84 on the Emotion-Gait benchmark dataset, which contains both labeled and unlabeled gaits collected from multiple sources. We outperform current state-of-art algorithms for both emotion recognition and action recognition from 3D gaits by 7%--23% on the absolute. More importantly, we improve the average precision by 10%--50% on the absolute on classes that each makes up less than 25% of the labeled part of the Emotion-Gait benchmark dataset.Comment: In proceedings of the 16th European Conference on Computer Vision, 2020. Total pages 18. Total figures 5. Total tables

    A review on Video Classification with Methods, Findings, Performance, Challenges, Limitations and Future Work

    Get PDF
    In recent years, there has been a rapid development in web users and sufficient bandwidth. Internet connectivity, which is so low cost, makes the sharing of information (text, audio, and videos) more common and faster. This video content needs to be analyzed for prediction it classes in different purpose for the users. Many machines learning approach has been developed for the classification of video to save people time and energy. There are a lot of existing review papers on video classification, but they have some limitations such as limitation of the analysis, badly structured, not mention research gaps or findings, not clearly describe advantages, disadvantages, and future work. But our review paper almost overcomes these limitations. This study attempts to review existing video-classification procedures and to examine the existing methods of video-classification comparatively and critically and to recommend the most effective and productive process. First of all, our analysis examines the classification of videos with taxonomical details, the latest application, process, and datasets information. Secondly, overall inconvenience, difficulties, shortcomings and potential work, data, performance measurements with the related recent relation in science, deep learning, and the model of machine learning. Study on video classification systems using their tools, benefits, drawbacks, as well as other features to compare the techniques they have used also constitutes a key task of this review. Lastly, we also present a quick summary table based on selected features. In terms of precision and independence extraction functions, the RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) and combination approach performs better than the CNN dependent method
    corecore