236 research outputs found

    Evaluation of Deep Learning and Conventional Approaches for Image Recaptured Detection in Multimedia Forensics

    Get PDF
    Image recaptured from a high-resolution LED screen or a good quality printer is difficult to distinguish from its original counterpart. The forensic community paid less attention to this type of forgery than to other image alterations such as splicing, copy-move, removal, or image retouching. It is significant to develop secure and automatic techniques to distinguish real and recaptured images without prior knowledge. Image manipulation traces can be hidden using recaptured images. For this reason, being able to detect recapture images becomes a hot research topic for a forensic analyst. The attacker can recapture the manipulated images to fool image forensic system. As far as we know, there is no prior research that has examined the pros and cons of up-to-date image recaptured techniques. The main objective of this survey was to succinctly review the recent outcomes in the field of image recaptured detection and investigated the limitations in existing approaches and datasets. The outcome of this study provides several promising directions for further significant research on image recaptured detection. Finally, some of the challenges in the existing datasets and numerous promising directions on recaptured image detection are proposed to demonstrate how these difficulties might be carried into promising directions for future research. We also discussed the existing image recaptured datasets, their limitations, and dataset collection challenges.publishedVersio

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Color and Texture Analysis of Textiles Using Image Acquisition and Spectral Analysis in Calibrated Sphere Imaging System-I

    Get PDF
    Funding This research received no external funding. Acknowledgments We are also grateful to Manas Sarkar, ITC, HKPU for providing cotton samples with varied textures and Dystar, Hong Kong, for generously providing us with dye samples. We are thankful to for the experimental support from new fiber science and IoT Lab, OUTR sponsored by TEQIP-3 seed money and MODROB (/9-34/RIFDMO DPOLICY-1/2018-19).Peer reviewedPublisher PD

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Identification of tissue biomarkers of prognostic significance in pancreatic cancer

    Get PDF
    Background: Pancreatic cancer is the third leading cause of cancer-related mortality. Lack of early detection strategies and therapeutic resistance are main contributors to the poor prognosis. Unfortunately, there are no tissue biomarkers available for the prognosis of pancreatic cancer in routine clinical use.Aim: To identify and validate novel tissue biomarkers for the prognosis of pancreatic cancer.Methods: A mass spectrometry-based proteomic approach was applied to formalin-fixed paraffin-embedded specimens from surgically resected pancreatic cancer in 9 patients with short survival (45 months). The dysregulated biomarkers were further verified by targeted proteomics, parallel reaction monitoring. Finally, we evaluated prognostic candidates (CLCA1, galectin 4, P4HA2, PRTN3 and fibronectin) by tissue microarray and immunohistochemistry in a larger cohort of patients with pancreatic cancer who underwent surgical resection (n=144). Bioinformatic analysis was exploited to assess pathways and networks linked to the prognosis. Kaplan-Meier and Cox proportional hazards modeling were used to explore the association between biomarkers and survival.Results/Conclusion: A total of 24 and 147 proteins were significantly upregulated in patients with short survival and long survival, respectively. Bioinformatic analysis linked proteins representing “activated stroma factors” and “basal tumor factors” to poor prognosis and highlighted TCF1 and CTNNB1 as possible upstream regulators. By targeted proteomics, seven proteins were verified to be upregulated in patients with short survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with long survival, including EPCAM, galectin 4, VIL1, CLCA1 and TPPP3 (I). By immunohistochemical validation, we found that low CLCA1 expression correlated significantly with shorter disease-free survival (II). Furthermore, galectin 4 expression significantly correlated with disease recurrence within 1 year of surgery and with overall survival at 1- and 3-year (III). Besides, a low P4HA2 and high PRTN3 expression pattern correlated with shorter disease-free survival and overall survival (IV). Finally, high stromal FN1 expression was associated with aggressive tumor characteristics in patients with resected pancreatic cancer, although it was not associated with survival (V)

    Implementation of a Depth from Light Field Algorithm on FPGA

    Get PDF
    A light field is a four-dimensional function that grabs the intensity of light rays traversing an empty space at each point. The light field can be captured using devices designed specifically for this purpose and it allows one to extract depth information about the scene. Most light-field algorithms require a huge amount of processing power. Fortunately, in recent years, parallel hardware has evolved and enables such volumes of data to be processed. Field programmable gate arrays are one such option. In this paper, we propose two hardware designs that share a common construction block to compute a disparity map from light-field data. The first design employs serial data input into the hardware, while the second employs view parallel input. These designs focus on performing calculations during data read-in and producing results only a few clock cycles after read-in. Several experiments were conducted. First, the influence of using fixed-point arithmetic on accuracy was tested using synthetic light-field data. Also tests on actual light field data were performed. The performance was compared to that of a CPU, as well as an embedded processor. Our designs showed similar performance to the former and outperformed the latter. For further comparison, we also discuss the performance difference between our designs and other designs described in the literatur

    The Retina in Health and Disease

    Get PDF
    Vision is the most important sense in higher mammals. The retina is the first step in visual processing and the window to the brain. It is not surprising that problems arising in the retina lead to moderate to severe visual impairments. We offer here a collection of reviews as well as original papers dealing with various aspects of retinal function as well as dysfunction. New approaches in retinal research are described, such as the expression and localization of the endocannabinoid system in the normal retina and the role of cannabinoid receptors that could offer new avenues of research in the development of potential treatments for retinal diseases. Moreover, new insights are offered in advancing knowledge towards the prevention and cure of visual pathologies, mainly AMD, RP, and diabetic retinopathy
    • …
    corecore