771 research outputs found

    Human upper limb motion analysis for post-stroke impairment assessment using video analytics

    Get PDF
    Stroke is a worldwide healthcare problem which often causes long-term motor impairment, handicap, and disability. Optical motion analysis systems are commonly used for impairment assessment due to high accuracy. However, the requirement of equipment-heavy and large laboratory space together with operational expertise, makes these systems impractical for local clinic and home use. We propose an alternative, cost-effective and portable, decision support system for optical motion analysis, using a single camera. The system relies on detecting and tracking markers attached to subject's joints, data analytics for calculating relevant rehabilitation parameters, visualization, and robust classification based on graph-based signal processing. Experimental results show that the proposed decision support system has the potential to offer stroke survivors and clinicians an alternative, affordable, accurate and convenient impairment assessment option suitable for home healthcare and tele-rehabilitation

    A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies

    Get PDF
    Telerehabilitation systems that support physical therapy sessions anywhere can help save healthcare costs while also improving the quality of life of the users that need rehabilitation. The main contribution of this paper is to present, as a whole, all the features supported by the innovative Kinect-based Telerehabilitation System (KiReS). In addition to the functionalities provided by current systems, it handles two new ones that could be incorporated into them, in order to give a step forward towards a new generation of telerehabilitation systems. The knowledge extraction functionality handles knowledge about the physical therapy record of patients and treatment protocols described in an ontology, named TRHONT, to select the adequate exercises for the rehabilitation of patients. The teleimmersion functionality provides a convenient, effective and user-friendly experience when performing the telerehabilitation, through a two-way real-time multimedia communication. The ontology contains about 2300 classes and 100 properties, and the system allows a reliable transmission of Kinect video depth, audio and skeleton data, being able to adapt to various network conditions. Moreover, the system has been tested with patients who suffered from shoulder disorders or total hip replacement.This research was funded by the Spanish Ministry of Economy and Competitiveness grant number FEDER/TIN2016-78011-C4-2R
    • …
    corecore