189,366 research outputs found

    Human uncertainty makes classification more robust

    Full text link
    The classification performance of deep neural networks has begun to asymptote at near-perfect levels. However, their ability to generalize outside the training set and their robustness to adversarial attacks have not. In this paper, we make progress on this problem by training with full label distributions that reflect human perceptual uncertainty. We first present a new benchmark dataset which we call CIFAR10H, containing a full distribution of human labels for each image of the CIFAR10 test set. We then show that, while contemporary classifiers fail to exhibit human-like uncertainty on their own, explicit training on our dataset closes this gap, supports improved generalization to increasingly out-of-training-distribution test datasets, and confers robustness to adversarial attacks.Comment: In Proceedings of the 2019 IEEE International Conference on Computer Vision (ICCV

    Interactive multiple object learning with scanty human supervision

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We present a fast and online human-robot interaction approach that progressively learns multiple object classifiers using scanty human supervision. Given an input video stream recorded during the human robot interaction, the user just needs to annotate a small fraction of frames to compute object specific classifiers based on random ferns which share the same features. The resulting methodology is fast (in a few seconds, complex object appearances can be learned), versatile (it can be applied to unconstrained scenarios), scalable (real experiments show we can model up to 30 different object classes), and minimizes the amount of human intervention by leveraging the uncertainty measures associated to each classifier.; We thoroughly validate the approach on synthetic data and on real sequences acquired with a mobile platform in indoor and outdoor scenarios containing a multitude of different objects. We show that with little human assistance, we are able to build object classifiers robust to viewpoint changes, partial occlusions, varying lighting and cluttered backgrounds. (C) 2016 Elsevier Inc. All rights reserved.Peer ReviewedPostprint (author's final draft

    Psychometrics in Practice at RCEC

    Get PDF
    A broad range of topics is dealt with in this volume: from combining the psychometric generalizability and item response theories to the ideas for an integrated formative use of data-driven decision making, assessment for learning and diagnostic testing. A number of chapters pay attention to computerized (adaptive) and classification testing. Other chapters treat the quality of testing in a general sense, but for topics like maintaining standards or the testing of writing ability, the quality of testing is dealt with more specifically.\ud All authors are connected to RCEC as researchers. They present one of their current research topics and provide some insight into the focus of RCEC. The selection of the topics and the editing intends that the book should be of special interest to educational researchers, psychometricians and practitioners in educational assessment
    corecore