297 research outputs found

    AmI Systems as Agent-Based Mirror Worlds: Bridging Humans and Agents through Stigmergy

    Get PDF
    In this chapter we introduce a vision of agent-oriented AmI systems that is extended to integrate ideas inspired by MirrorWorlds as introduced by Gelernter at the beginning of the eighties. In this view, AmI systems are actually a digital world mirroring but also augmenting the physical world with capabilities, services and functionalities.We then discuss the value of stigmergy as background reference conceptual framework to define and understand interactions occurring between the physical environments and its digital agent-based extension. The digital world augments the physical world so that traces left by humans acting in the physical world are represented in the digital one in order to be perceived by software agents living there and, viceversa, actions taken by software agents in the mirror can have an effect on the connected physical counterpart

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    From Physical to Virtual: Widening the Perspective on Multi-Agent Environments

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23850-0_9Since more than a decade, the environment is seen as a key element when analyzing, developing or deploying Multi-Agent Systems (MAS) applications. Especially, for the development of multi-agent platforms it has become a key concept, similarly to many application in the area of location-based, distributed systems. An emerging, prominent application area for MAS is related to Virtual Environments. The underlying technology has evolved in a way, that these applications have grown out of science fiction novels till research papers and even real applications. Even more, current technologies enable MAS to be key components of such virtual environments. In this paper, we widen the concept of the environment of a MAS to encompass new and mixed physical, virtual, simulated, etc. forms of environments. We analyze currently most interesting application domains based on three dimensions: the way different "realities" are mixed via the environment, the underlying natures of agents, the possible forms and sophistication of interactions. In addition to this characterization, we discuss how this widened concept of possible environments influences the support it can give for developing applications in the respective domains.Carrascosa Casamayor, C.; Klugl, F.; Ricci, A.; Boissier, O. (2015). From Physical to Virtual: Widening the Perspective on Multi-Agent Environments. En Agent Environments for Multi-Agent Systems IV. 4th International Workshop, E4MAS 2014 - 10 Years Later, Paris, France, May 6, 2014. 133-146. https://doi.org/10.1007/978-3-319-23850-0_9S133146Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)Argente, E., Boissier, O., Carrascosa, C., Fornara, N., McBurney, P., Noriega, P., Ricci, A., Sabater-Mir, J., et al.: The role of the environment in agreement technologies. AI Rev. 39(1), 21–38 (2013)Barreteau, O., et al.: Our companion modelling approach. J. Artif. Soc. Soc. Simul. 6(1), 1–6 (2003)Boissier, O., Bordini, R.H., HĂŒbner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with jacamo. Sci. Comput. Program. 78(6), 747–761 (2013)Burdea, G., Coiffet, P.: Virtual Reality Technology. Wiley, New York (2003)Castelfranchi, C., Pezzullo, G., Tummolini, L.: Behavioral implicit communication (BIC): communicating with smart environments via our practical behavior and its traces. Int. J. Ambient Comput. Intell. 2(1), 1–12 (2010)Castelfranchi, C., Piunti, M., Ricci, A., Tummolini, L.: AMI systems as agent-based mirror worlds: bridging humans and agents through stigmergy. In: Bosse, T. (ed.) Agents and Ambient Intelligence, Ambient Intelligence and Smart Environments, pp. 17–31. IOS Press, Amsterdam (2012)Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Harlow (1999)Gelernter, D.: Mirror Worlds - or the Day Software Puts the Universe in a Shoebox: How it Will Happen and What it Will Mean. Oxford University Press, New York (1992)Gibson, W.: Neuromancer. Ace, New York (1984)KlĂŒgl, F., Fehler, M., Herrler, R.: About the role of the environment in multi-agent simulations. In: Weyns, D., Van Parunak, H.D., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 127–149. Springer, Heidelberg (2005)Krueger, M.: Artificial Reality II. Addison-Wesley, New York (1991)Luck, M., Aylett, R.: Applying artificial intelligence to virtual reality: intelligent virtual environments. Appl. Artif. Intell. 14(1), 3–32 (2000)Dorigo, M., Floreano, D., Gambardella, L.M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)Milgram, P., Kishino, A.F.: Taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77–D(12), 1321–1329 (1994)Olsson, T., Salo, M.: Online user survey on current mobile augmented reality applications. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 75–84. IEEE Computer Society, Washington, DC, USA (2011)Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context awareness in multiagent systems. J. Logic Lang. Inform. 23(2), 219–247 (2014)Stephenson, N.: Snow Crash. Bantam Books, New York (1992)Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In: Weyns, D., Van Parunak, H.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 141–156. Springer, Heidelberg (2007)Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007)Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of e’gv transportation systems. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 67–74. ACM (2005)Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environments in multiagent systems. Knowl. Eng. Rev. 20(2), 127–141 (2005

    Monitoring elderly behavior via indoor position-based stigmergy

    Get PDF
    In this paper we present a novel approach for monitoring elderly people living alone and independently in their own homes. The proposed system is able to detect behavioral deviations of the routine indoor activities on the basis of a generic indoor localization system and a swarm intelligence method. For this reason, an in-depth study on the error modeling of state-of-the-art indoor localization systems is presented in order to test the proposed system under different conditions in terms of localization error. More specifically, spatiotemporal tracks provided by the indoor localization system are augmented, via marker-based stigmergy, in order to enable their self-organization. This allows a marking structure appearing and staying spontaneously at runtime, when some local dynamism occurs. At a second level of processing, similarity evaluation is performed between stigmergic marks over different time periods in order to assess deviations. The purpose of this approach is to overcome an explicit modeling of user's activities and behaviors that is very inefficient to be managed, as it works only if the user does not stray too far from the conditions under which these explicit representations were formulated. The effectiveness of the proposed system has been experimented on real-world scenarios. The paper includes the problem statement and its characterization in the literature, as well as the proposed solving approach and experimental settings

    Enabling swarm aggregation of position data via adaptive stigmergy: a case study in urban traffic flows

    Get PDF
    Urban road congestion estimation is a challenge in traffic management. City traffic state can vary temporally and spatially between road links, depending on crossroads and lanes. In addition, congestion estimation requires some sort of tuning to “what is around” to trigger appropriate reactions. An adaptive aggregation mechanism of position data is therefore crucial for traffic control. We present a biologically-inspired technique to aggregate position samples coming from on-vehicle devices. In essence, each vehicle position sample is spatially and temporally augmented with digital pheromone information, locally deposited and evaporated. As a consequence, an aggregated pheromone concentration appears and stays spontaneously while many stationary vehicles and high density roads occur. Pheromone concentration is then sharpened to achieve a better distinction of critical phenomena to be triggered as detected traffic events. The overall mechanism can be actually enabled if structural parameters are correctly tuned for the given application context. Determining such correct parameters is not a simple task since different urban areas have different traffic flux and density. Thus, an appropriate tuning to adapt parameters to the specific urban area is desirable to make the estimation effective. In this paper, we show how this objective can be achieved by using differential evolution

    Fostering Distributed Business Logic in Open Collaborative Networks: an integrated approach based on semantic and swarm coordination

    Get PDF
    Given the great opportunities provided by Open Collaborative Networks (OCNs), their success depends on the effective integration of composite business logic at all stages. However, a dilemma between cooperation and competition is often found in environments where the access to business knowledge can provide absolute advantages over the competition. Indeed, although it is apparent that business logic should be automated for an effective integration, chain participants at all segments are often highly protective of their own knowledge. In this paper, we propose a solution to this problem by outlining a novel approach with a supporting architectural view. In our approach, business rules are modeled via semantic web and their execution is coordinated by a workflow model. Each company’s rule can be kept as private, and the business rules can be combined together to achieve goals with defined interdependencies and responsibilities in the workflow. The use of a workflow model allows assembling business facts together while protecting data source. We propose a privacy-preserving perturbation technique which is based on digital stigmergy. Stigmergy is a processing schema based on the principle of self-aggregation of marks produced by data. Stigmergy allows protecting data privacy, because only marks are involved in aggregation, in place of actual data values, without explicit data modeling. This paper discusses the proposed approach and examines its characteristics through actual scenarios

    Complex Adaptive Systems & Urban Morphogenesis:

    Get PDF
    This thesis looks at how cities operate as Complex Adaptive Systems (CAS). It focuses on how certain characteristics of urban form can support an urban environment's capacity to self-organize, enabling emergent features to appear that, while unplanned, remain highly functional. The research is predicated on the notion that CAS processes operate across diverse domains: that they are ‘generalized' or ‘universal'. The goal of the dissertation is then to determine how such generalized principles might ‘play out' within the urban fabric. The main thrust of the work is to unpack how elements of the urban fabric might be considered as elements of a complex system and then identify how one might design these elements in a more deliberate manner, such that they hold a greater embedded capacity to respond to changing urban forces. The research is further predicated on the notion that, while such responses are both imbricated with, and stewarded by human actors, the specificities of the material characteristics themselves matter. Some forms of material environments hold greater intrinsic physical capacities (or affordances) to enact the kinds of dynamic processes observed in complex systems than others (and can, therefore, be designed with these affordances in mind). The primary research question is thus:   What physical and morphological conditions need to be in place within an urban environment in order for Complex Adaptive Systems dynamics arise - such that the physical components (or ‘building blocks') of the urban environment have an enhanced capacity to discover functional configurations in space and time as a response to unfolding contextual conditions?   To answer this question, the dissertation unfolds in a series of parts. It begins by attempting to distill the fundamental dynamics of a Complex Adaptive System. It does so by means of an extensive literature review that examines a variety of highly cited ‘defining principles' or ‘key attributes' of CAS. These are cross-referenced so as to extract common features and distilled down into six major principles that are considered as the generalized features of any complex system, regardless of domain. In addition, this section considers previous urban research that engages complexity principles in order to better position the distinctive perspective of this thesis. This rests primarily on the dissertation's focus on complex urban processes that occur by means of materially enabled in situ processes. Such processes have, it is argued, remained largely under-theorized. The opening section presents introductory examples of what might be meant by a ‘materially enabling' environment.   The core section of the research then undertakes a more detailed unpacking of how complex processes can be understood as having a morphological dimension. This section begins by discussing, in broad terms, the potential ‘phase space' of a physical environment and how this can be expanded or limited according to a variety of factors. Drawing insights from related inquiries in the field of Evolutionary Economic Geography, the research argues that, while emergent capacity is often explored in social, economic, or political terms, it is under-theorized in terms of the concrete physical sub-strata that can also act to ‘carry' or ‘moor' CAS dynamics. This theme is advanced in the next article, where a general framework for speaking about CAS within urban environments is introduced. This framework borrows from the terms for ‘imageability' that were popularized by Kevin Lynch: paths, edges, districts, landmarks, and nodes. These terms are typically associated with physical or ‘object-like features' of the urban environment – that is to say, their image. The terminology is then co-opted such that it makes reference not simply to physical attributes, but rather to the complex processes these attributes enable. To advance this argument, the article contrasts the static and ‘imageable' qualities of New Urbanism projects with the ‘unfolding' and dynamic qualities of complex systems - critiquing NU proponents as failing to appreciate the underlying forces that generate the environments they wish to emulate. Following this, the efficacy of the re-purposed ‘Lynchian' framework is tested using the case study of Istanbul's Grand Bazaar. Here, specific elements of the Bazaar's urban fabric are positioned as holding material agency that enables particular emergent spatial phenomena to manifest. In addition, comparisons are drawn between physical dynamics unfolding within the Bazaar's morphological setting (leading to emergent merchant districts) and parallel dynamics explored within Evolutionary Economic Geography).   The last section of the research extends this research to consider digitally augmented urban elements that hold an enhanced ability to receive and convey information. A series of speculative thought-experiments highlight how augmented urban entities could employ CAS dynamics to ‘solve for' different kinds of urban optimization scenarios, leading these material entities to self-organize (with their users) and discover fit regimes. The final paper flips the perspective, considering how, not only material agency, but also human agency is being augmented by new information processing technologies (smartphones), and how this can lead to new dances of agency that in turn generate novel emergent outcomes.   The dissertation is based on a compilation of articles that have, for the most part, been published in academic journals and all the research has been presented at peer-reviewed academic conferences. An introduction, conclusion, and explanatory transitions between sections are provided in order to clarify the narrative thread between the sections and the articles. Finally, a brief ‘coda' on the spatial dynamics afforded by Turkish Tea Gardens is offered

    What Is Collective Intelligence?

    Get PDF
    Chapter 1 introduces collective intelligence (CI) as an academic concept. At a basic level, CI extends the conception of intelligence from an individual to a group level. Pierre LĂ©vy formulated the modern version in 1994, when he described the invention of the Internet as a new universally distributed intelligence. Today, CI covers many different areas, but most definitions are vague and inconsistent across academic disciplines. Studies address collective problem solving in both small and large groups. At a micro level, researchers have identified a general group intelligence factor that is relevant for performance in small groups. At a macro level, studies of large groups have focused on different types of self-organization, including both stigmergy and swarm coordination. In addition, diversity examines CI as a core feature, both from the perspective of the “many wrongs principle” and the “many eyes principle.” Furthermore, the chapter provides a description of the book’s theoretical approach, building on Vygotsky and the inclusion of both biological and cultural-historical perspectives. The section on the methodological approach explains the data collection process, and the use of top solver perceptions of their participation in online innovation contests.publishedVersio
    • 

    corecore