27 research outputs found

    Development of pulse diagnostic devices in Korea

    Get PDF
    AbstractIn Korean medicine, pulse diagnosis is one of the important methods for determining the health status of a patient. For over 40 years, electromechanical pulse diagnostic devices have been developed to objectify and quantify pulse diagnoses. In this paper, we review previous research and development for pulse diagnostic devices according to various fields of study: demand analysis and current phase, literature studies, sensors, actuators, systems, physical quantity studies, clinical studies, and the U-health system. We point out some confusing issues that have been naively accepted without strict verification: original pressure pulse waveform and derivative pressure pulse waveform, pressure signals and other signal types, and minutely controlled pressure exertion issues. We then consider some technical and clinical issues to achieve the development of a pulse diagnostic device that is appropriate both technically and in terms of Korean medicine. We hope to show the history of pulse diagnostic device research in Korea and propose a proper method to research and develop these devices

    Cuffless Blood Pressure Estimation

    Get PDF
    The blood pressure is an important factor in the diagnosis and evaluation of several diseases, such as acute myocardial infarction and stroke. This way, continuous monitorization of this parameter is crucial to a correct health evaluation. The current methods, like the oscillometric method, have some major drawbacks, that can influence the output values or even make the measurements impossible. One example is the high frequency evaluation of the blood pressure, in the standard used methods the process of measuring can take up to 3 minutes, and a waiting time is necessary between consecutive measurements. This dissertation presents two different cuffless solution to solve those problems. One based on physical models of the human body, and the other using machine learning techniques. In the first solution seven models that correlate pulse transit time and blood pressure, deducted by different authors, were tested to evaluate which one performed better. The testes were performed in a custom dataset acquired at Fraunhofer AICOS and in clinical environment, with two different devices (low cost device and medical grade device). The results indicate that pulse transit time can be used to track blood pressure, the developed device/method was evaluated as grade A based in the Standard IEEE 1708-2014. The second solution it’s a proof of concept using a public database and three different machine learning methods (Random Forest, Neural Network and AdaBoost). Two sets of features are calculated from the ECG and PPG signals, one using TSFEL (spectral, frequency and time domain features) and a total of 15 custom features. The proposed method outperforms the methods presented in bibliography with mean absolute error of 3.6 mmHg and 2.0 mmHg to systolic and diastolic blood pressure respectively

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    Synthesis of normal and abnormal heart sounds using Generative Adversarial Networks

    Get PDF
    En esta tesis doctoral se presentan diferentes métodos propuestos para el análisis y síntesis de sonidos cardíacos normales y anormales, logrando los siguientes aportes al estado del arte: i) Se implementó un algoritmo basado en la transformada wavelet empírica (EWT) y la energía promedio normalizada de Shannon (NASE) para mejorar la etapa de segmentación automática de los sonidos cardíacos; ii) Se implementaron diferentes técnicas de extracción de características para las señales cardíacas utilizando los coeficientes cepstrales de frecuencia Mel (MFCC), los coeficientes de predicción lineal (LPC) y los valores de potencia. Además, se probaron varios modelos de Machine Learning para la clasificación automática de sonidos cardíacos normales y anormales; iii) Se diseñó un modelo basado en Redes Adversarias Generativas (GAN) para generar sonidos cardíacos sintéticos normales. Además, se implementa un algoritmo de eliminación de ruido utilizando EWT, lo que permite una disminución en la cantidad de épocas y el costo computacional que requiere el modelo GAN; iv) Finalmente, se propone un modelo basado en la arquitectura GAN, que consiste en refinar señales cardíacas sintéticas obtenidas por un modelo matemático con características de señales cardíacas reales. Este modelo se ha denominado FeaturesGAN y no requiere una gran base de datos para generar diferentes tipos de sonidos cardíacos. Cada uno de estos aportes fueron validados con diferentes métodos objetivos y comparados con trabajos publicados en el estado del arte, obteniendo resultados favorables.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    Driver drowsiness detection using different classification algorithms

    Get PDF
    Capability of electrocardiogram (ECG) signal in contributing to the daily application keeps developing days by days. As technology advances, ECG marks the possibility as a potential mechanism towards the drowsiness detection system. Driver drowsiness is a state between sleeping and being awake due to body fatigue while driving. This condition has become a common issue that leads to road accidents and death. It is proven in previous studies that biological signals are closely related to a person's reaction. Electrocardiogram (ECG) is an electrical indicator of the heart, provides such criteria as it reflects the heart activity that can detect changes in human response which relates to our emotions and reactions. Thus, this study proposed a non-intrusive detector to detect driver drowsiness by using the ECG. This study obtained ECG data from the ULg multimodality drowsiness database to simulate the different stages of sleep, which are PVT1 as early sleep while PVT2 as deep sleep. The signals are later processed in MATLAB using Savitzky-Golay filter to remove artifacts in the signal. Then, QRS complexes are extracted from the acquired ECG signal. The process was followed by classifying the ECG signal using Machine Learning (ML) tools. The classification techniques that include Multilayer Perceptron (MLP), k-Nearest Neighbour (IBk) and Bayes Network (BN) algorithms proved to support the argument made in both PVT1 and PVT2 to measure the accuracy of the data acquired. As a result, PVT1 and PVT2 are correctly classified as the result shown with higher percentage accuracy on each PVTs. Hence, this paper present and prove the reliability of ECG signal for drowsiness detection in classifying high accuracy ECG data using different classification algorithms

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Fun weight

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester' i l'"International Design Project Semester".The main objective of the Fun Weight project was to decrease the level of anxiety from children during preoperative treatment, while the gathering of measurements essential for further hospitalization takes place. This assignment has been conducted by an international and multidisciplinary team whose members were from fields of: Product Design, Electronics and Information Communication Technologies, Mechanical Engineering and Information Technology. The project was interesting and constructive due to tight cooperation with the Hospital de Sant Joan de Deu in Barcelona which was the main stakeholder of this project. Methodology of the project consisted of in advance strictly defined steps, which were: researching, designing of the interactive game, designing/development of the application, prototyping of the application, prototyping of the interactive game and testing. However the development of the interactive game and the application have been performed simultaneously. The outcome of this project has reached its end at the 17th of June and concluded following three elements: electronical prototype of the interactive game, three dimensional model of the game and the mobile application for retrieving measurements and communicating with the interactive game. The stage of testing was divided into three independent sections: testing of the application usability, testing of the application functionality and evaluation of actual anxiety decreasing. As a result of application usability test, an average rate of ease of the interface has been obtained at the level of 2 what states for easy to use. Functionality tests have been performed with application of the Angel Sensor in function of the measuring device. In spite of problems encountered during the use of that sensor, basic functionalities of the application have been confirmed. Due to the shortage of the time, evaluation of decrease of anxiety level has not yet been conducted

    A unified methodology for heartbeats detection in seismocardiogram and ballistocardiogram signals

    Get PDF
    This work presents a methodology to analyze and segment both seismocardiogram (SCG) and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform annotation. Rigorous performance assessment is conducted in terms of sensitivity, precision, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of annotation. The methodology is tested on four independent datasets, covering different measurement setups and time resolutions. A wide application range is therefore explored, which better characterizes the robustness and generality of the method with respect to a single dataset. Overall, sensitivity and precision scores are uniform across all datasets (p > 0.05 from the Kruskal–Wallis test): the average sensitivity among datasets is 98.7%, with 98.2% precision. On the other hand, a slight yet significant difference in RMSE and MAE scores was found (p < 0.01) in favor of datasets with higher sampling frequency. The best RMSE scores for SCG and BCG are 4.5 and 4.8 ms, respectively; similarly, the best MAE scores are 3.3 and 3.6 ms. The results were compared to relevant recent literature and are found to improve both detection performance and temporal annotation errors

    Sinus rhythm restoration with electrical cardioversion: acute effect of shock configuration and subsequent modifications in peripheral flow and sleep.

    Get PDF
    Atrial fibrillation (AF) is a widespread arrhythmia, associated with higher risk of stroke, sleep disorders and dementia. In some conditions, electrical cardioversion (ECV) represents the best choice for rhythm control. Nowadays, there is a growing interest in developing new devices for screening and monitoring of AF patients. We aimed to improve acute efficacy of ECV procedure and to explore the feasibility of the use of new wearable devices for monitoring in candidates to AF ECV. We compared antero-apical pads vs antero-posterior patches approach for AF ECV, and we elaborated a decision algorithm to improve acute efficacy. After, we evaluated the feasibility of the use of new wearable devices for monitoring of candidates to AF ECV. In particular, we analysed the effect of AF ECV on heart rate variability and vascular age parameters derived from PPG signals registered with Empatica (CE 1876/MDD 93/42/EEC), and on EEG pattern registered with Neurosteer (Israel). From December 2005 to September 2019, 492 patients were enrolled. We evaluated acute efficacy of the two approaches for AF ECV and we elaborated a decision algorithm based on body surface area, weight, and height. The decision algorithm improved first shock efficacy (93.2% vs. 87.2%, p=0.025). From 1st November 2021 to 1st April 2022, 24 patients were enrolled in PPEEG-AF pilot study. Considering vascular age parameters, a significant reduction in TPR and a wave was observed (p<0.001). Considering sleep patterns, a tendency to higher coherence was observed in registrations acquired during AF, or considering signals registered for each patient independently from AF. The new decision algorithm improved acute efficacy and reduced costs associated with adhesive patches. Significant modifications were observed on vascular age parameters measured before and after ECV, and a possible AF effect on sleep pattern was noticed. More data are necessary to confirm these preliminary results
    corecore