33 research outputs found

    ๋ถ€๋ถ„ ์ •๋ณด๋ฅผ ์ด์šฉํ•œ ์‹œ๊ฐ ๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™” ๋œ ์ดํ•ด: ํฌ์†Œ์„ฑ, ๋ฌด์ž‘์œ„์„ฑ, ์—ฐ๊ด€์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋”ฅ ๋„คํŠธ์›Œํฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. Oh, Songhwai.For a deeper understanding of visual data, a relationship between local parts and a global scene has to be carefully examined. Examples of such relationships related to vision problems include but not limited to detecting a region of interest in the scene, classifying an image based on limited visual cues, and synthesizing new images conditioned on the local or global inputs. In this thesis, we aim to learn the relationship and demonstrate its importance by showing that it is one of critical keys to address four challenging vision problems mentioned above. For each problem, we construct deep neural networks that suit for each task. The first problem considered in the thesis is object detection. It requires not only finding local patches that look like target objects conditioned on the context of input scene but also comparing local patches themselves to assign a single detection for each object. To this end, we introduce individualness of detection candidates as a complement to objectness for object detection. The individualness assigns a single detection for each object out of raw detection candidates given by either object proposals or sliding windows. We show that conventional approaches, such as non-maximum suppression, are sub-optimal since they suppress nearby detections using only detection scores. We use a determinantal point process combined with the individualness to optimally select final detections. It models each detection using its quality and similarity to other detections based on the individualness. Then, detections with high detection scores and low correlations are selected by measuring their probability using a determinant of a matrix, which is composed of quality terms on the diagonal entries and similarities on the off-diagonal entries. For concreteness, we focus on the pedestrian detection problem as it is one of the most challenging problems due to frequent occlusions and unpredictable human motions. Experimental results demonstrate that the proposed algorithm works favorably against existing methods, including non-maximal suppression and a quadratic unconstrained binary optimization based method. For a second problem, we classify images based on observations of local patches. More specifically, we consider the problem of estimating the head pose and body orientation of a person from a low-resolution image. Under this setting, it is difficult to reliably extract facial features or detect body parts. We propose a convolutional random projection forest (CRPforest) algorithm for these tasks. A convolutional random projection network (CRPnet) is used at each node of the forest. It maps an input image to a high-dimensional feature space using a rich filter bank. The filter bank is designed to generate sparse responses so that they can be efficiently computed by compressive sensing. A sparse random projection matrix can capture most essential information contained in the filter bank without using all the filters in it. Therefore, the CRPnet is fast, e.g., it requires 0.04ms to process an image of 50ร—50 pixels, due to the small number of convolutions (e.g., 0.01% of a layer of a neural network) at the expense of less than 2% accuracy. The overall forest estimates head and body pose well on benchmark datasets, e.g., over 98% on the HIIT dataset, while requiring at 3.8ms without using a GPU. Extensive experiments on challenging datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in low-resolution images with noise, occlusion, and motion blur. Then, we shift our attention to image synthesis based on the local-global relationship. Learning how to synthesize and place object instances into an image (semantic map) based on the scene context is a challenging and interesting problem in vision and learning. On one hand, solving this problem requires a joint decision of (a) generating an object mask from a certain class at a plausible scale, location, and shape, and (b) inserting the object instance mask into an existing scene so that the synthesized content is semantically realistic. On the other hand, such a model can synthesize realistic outputs to potentially facilitate numerous image editing and scene parsing tasks. In this paper, we propose an end-to-end trainable neural network that can synthesize and insert object instances into an image via a semantic map. The proposed network contains two generative modules that determine where the inserted object should be (i.e., location and scale) and what the object shape (and pose) should look like. The two modules are connected together with a spatial transformation network and jointly trained and optimized in a purely data-driven way. Specifically, we propose a novel network architecture with parallel supervised and unsupervised paths to guarantee diverse results. We show that the proposed network architecture learns the context-aware distribution of the location and shape of object instances to be inserted, and it can generate realistic and statistically meaningful object instances that simultaneously address the where and what sub-problems. As the final topic of the thesis, we introduce a new vision problem: generating an image based on a small number of key local patches without any geometric prior. In this work, key local patches are defined as informative regions of the target object or scene. This is a challenging problem since it requires generating realistic images and predicting locations of parts at the same time. We construct adversarial networks to tackle this problem. A generator network generates a fake image as well as a mask based on the encoder-decoder framework. On the other hand, a discriminator network aims to detect fake images. The network is trained with three losses to consider spatial, appearance, and adversarial information. The spatial loss determines whether the locations of predicted parts are correct. Input patches are restored in the output image without much modification due to the appearance loss. The adversarial loss ensures output images are realistic. The proposed network is trained without supervisory signals since no labels of key parts are required. Experimental results on seven datasets demonstrate that the proposed algorithm performs favorably on challenging objects and scenes.์‹œ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ฌ๋„ ๊นŠ๊ฒŒ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „์ฒด ์˜์—ญ๊ณผ ๋ถ€๋ถ„ ์˜์—ญ๋“ค ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ ํ˜น์€ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ฃผ์˜ ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ์ด์— ๊ด€๋ จ๋œ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ฌธ์ œ๋กœ๋Š” ์ด๋ฏธ์ง€์—์„œ ์›ํ•˜๋Š” ๋ถ€๋ถ„์„ ๊ฒ€์ถœํ•œ๋‹ค๋˜์ง€, ์ œํ•œ๋œ ๋ถ€๋ถ„์ ์ธ ์ •๋ณด๋งŒ์œผ๋กœ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ ํŒ๋ณ„ ํ•˜๊ฑฐ๋‚˜, ํ˜น์€ ์ฃผ์–ด์ง„ ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์›ํ•˜๋Š” ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋“ฑ์ด ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š”, ๊ทธ ์—ฐ๊ด€์„ฑ์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ์•ž์„œ ์–ธ๊ธ‰๋œ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋“ค์„ ํ‘ธ๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ด์‡ ๊ฐ€ ๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ๊ณ ์ž ํ•œ๋‹ค. ์ด์— ๋”ํ•ด์„œ, ๊ฐ๊ฐ์˜ ๋ฌธ์ œ์— ์•Œ๋งž๋Š” ๋”ฅ ๋„คํŠธ์›Œํฌ์˜ ๋””์ž์ธ ๋˜ํ•œ ํ† ์˜ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ์ฃผ์ œ๋กœ, ๋ฌผ์ฒด ๊ฒ€์ถœ ๋ฐฉ์‹์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ํƒ€๊ฒŸ ๋ฌผ์ฒด์™€ ๋น„์Šทํ•˜๊ฒŒ ์ƒ๊ธด ์˜์—ญ์„ ์ฐพ์•„์•ผ ํ•  ๋ฟ ์•„๋‹ˆ๋ผ, ์ฐพ์•„์ง„ ์˜์—ญ๋“ค ์‚ฌ์ด์— ์—ฐ๊ด€์„ฑ์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ๊ฐ ๋ฌผ์ฒด ๋งˆ๋‹ค ๋‹จ ํ•˜๋‚˜์˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋ฅผ ํ• ๋‹น์‹œ์ผœ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” objectness์— ๋Œ€ํ•œ ๋ณด์™„์œผ๋กœ์จ individualness๋ผ๋Š” ๊ฐœ๋…์„ ์ œ์•ˆ ํ•˜์˜€๋‹ค. ์ด๋Š” ์ž„์˜์˜ ๋ฐฉ์‹์œผ๋กœ ์–ป์–ด์ง„ ํ›„๋ณด ๋ฌผ์ฒด ์˜์—ญ ์ค‘ ํ•˜๋‚˜์”ฉ์„ ๋ฌผ์ฒด ๋งˆ๋‹ค ํ• ๋‹นํ•˜๋Š”๋ฐ ์“ฐ์ด๋Š”๋ฐ, ์ด๊ฒƒ์€ ๊ฒ€์ถœ ์Šค์ฝ”์–ด๋งŒ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ›„์ฒ˜๋ฆฌ๋ฅผ ํ•˜๋Š” ๊ธฐ์กด์˜ non-maximum suppression ๋“ฑ์˜ ๋ฐฉ์‹์ด sub-optimal ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ๋ฐ–์— ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ณ ์ž ๋„์ž…ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ํ›„๋ณด ๋ฌผ์ฒด ์˜์—ญ์œผ๋กœ๋ถ€ํ„ฐ ์ตœ์ ์˜ ์˜์—ญ๋“ค์„ ์„ ํƒํ•˜๊ธฐ ์œ„ํ•ด์„œ, determinantal point process๋ผ๋Š” random process์˜ ์ผ์ข…์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด๊ฒƒ์€ ๋จผ์ € ๊ฐ๊ฐ์˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๊ฒƒ์˜ quality(๊ฒ€์ถœ ์Šค์ฝ”์–ด)์™€ ๋‹ค๋ฅธ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋“ค ์‚ฌ์ด์— individualness๋ฅผ ๋ฐ”ํƒ•์œผ ๋กœ ๊ณ„์‚ฐ๋œ similarity(์ƒ๊ด€ ๊ด€๊ณ„)๋ฅผ ์ด์šฉํ•ด ๋ชจ๋ธ๋ง ํ•œ๋‹ค. ๊ทธ ํ›„, ๊ฐ๊ฐ์˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๊ฐ€ ์„ ํƒ๋  ํ™•๋ฅ ์„ quality์™€ similarity์— ๊ธฐ๋ฐ˜ํ•œ ์ปค๋„์˜ determinant๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ๊ทธ ์ปค๋„์— diagonal ๋ถ€๋ถ„์—๋Š” quality๊ฐ€ ๋“ค์–ด๊ฐ€๊ณ , off-diagonal์—๋Š” similarity๊ฐ€ ๋Œ€์ž… ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์–ด๋–ค ๊ฒ€์ถœ ํ›„๋ณด๊ฐ€ ์ตœ์ข… ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋กœ ์„ ํƒ๋  ํ™•๋ฅ ์ด ๋†’์•„์ง€๊ธฐ ์œ„ํ•ด์„œ๋Š”, ๋†’์€ quality๋ฅผ ๊ฐ€์ง๊ณผ ๋™์‹œ์— ๋‹ค๋ฅธ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋“ค๊ณผ ๋‚ฎ์€ similarity๋ฅผ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณดํ–‰์ž ๊ฒ€์ถœ์— ์ง‘์ค‘ํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” ๋ณดํ–‰์ž ๊ฒ€์ถœ์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋ฉด์„œ๋„, ๋‹ค๋ฅธ ๋ฌผ์ฒด๋“ค์— ๋น„ํ•ด ์ž์ฃผ ๊ฐ€๋ ค์ง€๊ณ  ๋‹ค์–‘ํ•œ ์›€์ง์ž„์„ ๋ณด์ด๋Š” ๊ฒ€์ถœ์ด ์–ด๋ ค์šด ๋ฌผ์ฒด์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด non-maximum suppression ํ˜น์€ quadratic unconstrained binary optimization ๋ฐฉ์‹๋“ค ๋ณด๋‹ค ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‹ค์Œ ๋ฌธ์ œ๋กœ๋Š”, ๋ถ€๋ถ„ ์ •๋ณด๋ฅผ ์ด์šฉํ•ด์„œ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ classifyํ•˜๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•œ๋‹ค. ๋‹ค์–‘ํ•œ classification ๋ฌธ์ œ ์ค‘์—, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ €ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์‚ฌ๋žŒ์˜ ๋จธ๋ฆฌ์™€ ๋ชธ์ด ํ–ฅํ•˜๋Š” ๋ฐฉํ–ฅ์„ ์•Œ์•„๋‚ด๋Š” ๋ฌธ์ œ์— ์ง‘์ค‘ํ•˜์˜€๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š”, ๋ˆˆ, ์ฝ”, ์ž… ๋“ฑ์„ ์ฐพ๊ฑฐ๋‚˜, ๋ชธ์˜ ํŒŒํŠธ๋ฅผ ์ •ํ™•ํžˆ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” convolutional random projection forest (CRPforest)๋ผ๋Š” ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด forest์— ๊ฐ๊ฐ์˜ node ์•ˆ์—๋Š” convolutional random projection network (CRPnet)์ด ๋“ค์–ด์žˆ๋Š”๋ฐ, ์ด๋Š” ๋‹ค์–‘ํ•œ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ์ธํ’‹ ์ด๋ฏธ์ง€๋ฅผ ๋†’์€ ์ฐจ์›์œผ๋กœ mapping ํ•œ๋‹ค. ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด sparseํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ๋“ค์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์••์ถ• ์„ผ์‹ฑ ๊ฐœ๋…์„ ๋„์ž… ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ์ฆ‰, ์‹ค์ œ๋กœ๋Š” ์ ์€ ์ˆ˜์˜ ํ•„ํ„ฐ๋งŒ์„ ์‚ฌ์šฉํ•ด์„œ ์ „์ฒด ์ด๋ฏธ์ง€์˜ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ๋‹ด๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ CRPnet์€ 50ร—50 ํ”ฝ์…€ ์ด๋ฏธ์ง€์—์„œ 0.04ms ๋งŒ์— ๋™์ž‘ ํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๋งค์šฐ ๋น ๋ฅด๋ฉฐ, ๋™์‹œ์— ์„ฑ๋Šฅ ํ•˜๋ฝ์€ 2% ์ •๋„๋กœ ๋ฏธ๋ฏธํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ์ „์ฒด forest๋Š” GPU ์—†์ด 3.8ms ์•ˆ์— ๋™์ž‘ํ•˜๋ฉฐ, ๋จธ๋ฆฌ์™€ ๋ชธํ†ต ๋ฐฉํ–ฅ ์ธก์ •์— ๋Œ€ํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ตœ๊ณ ์˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ์ €ํ•ด์ƒ๋„, ๋…ธ์ด์ฆˆ, ๊ฐ€๋ ค์ง, ๋ธ”๋Ÿฌ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๊ฒฝ์šฐ์—๋„ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋ถ€๋ถ„-์ „์ฒด์˜ ์—ฐ๊ด€์„ฑ์„ ํ†ตํ•œ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ž…๋ ฅ ์ด๋ฏธ์ง€ ์ƒ์— ์–ด๋–ค ๋ฌผ์ฒด๋ฅผ ์–ด๋–ป๊ฒŒ ๋†“์„ ๊ฒƒ์ธ์ง€๋ฅผ ์œ ์ถ”ํ•˜๋Š” ๊ฒƒ์€ ์ปดํ“จํ„ฐ ๋น„์ „๊ณผ ๊ธฐ๊ณ„ ํ•™์Šต์˜ ์ž…์žฅ์—์„œ ์•„์ฃผ ํฅ๋ฏธ๋กœ์šด ๋ฌธ์ œ์ด๋‹ค. ์ด๋Š” ๋จผ์ €, ๋ฌผ์ฒด์˜ ๋งˆ์Šคํฌ๋ฅผ ์ ์ ˆํ•œ ํฌ๊ธฐ, ์œ„์น˜, ๋ชจ์–‘์œผ๋กœ ๋งŒ๋“ค๋ฉด์„œ ๋™์‹œ์— ๊ทธ ๋ฌผ์ฒด๊ฐ€ ์ž…๋ ฅ ์ด๋ฏธ์ง€ ์ƒ์— ๋†“์—ฌ์กŒ์„ ๋•Œ์—๋„ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ๋ณด์ผ ์ˆ˜ ์žˆ๋„๋ก ํ•ด์•ผ ํ•œ๋‹ค. ๊ทธ๋ ‡๊ฒŒ ๋œ๋‹ค๋ฉด, image editing ํ˜น์€ scene parsing ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ์— ์‘์šฉ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š”, ์ž…๋ ฅ semantic map์œผ๋กœ ๋ถ€ํ„ฐ ์ƒˆ๋กœ์šด ๋ฌผ์ฒด๋ฅผ ์•Œ๋งž์€ ๊ณณ์— ๋†“๋Š” ๋ฌธ์ œ๋ฅผ end-to-end ๋ฐฉ์‹์œผ๋กœ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ๋”ฅ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, where ๋ชจ๋“ˆ๊ณผ what ๋ชจ๋“ˆ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๋Š” ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๋‘ ๋ชจ๋“ˆ์„ spatial transformer network์„ ํ†ตํ•ด ์—ฐ๊ฒฐํ•˜์—ฌ ๋™์‹œ์— ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐ๊ฐ์˜ ๋ชจ๋“ˆ์— ์ง€๋„์  ํ•™์Šต ๊ฒฝ๋กœ์™€ ๋น„์ง€๋„์  ํ•™์Šต ๊ฒฝ๋กœ๋ฅผ ๋ณ‘๋ ฌ์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜์—ฌ ๋™์ผํ•œ ์ž…๋ ฅ์œผ๋กœ ๋ถ€ํ„ฐ ๋‹ค์–‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆํ•œ ๋ฐฉ์‹์ด ์‚ฝ์ž…๋  ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ๋ชจ์–‘์— ๋Œ€ํ•œ ๋ถ„ํฌ๋ฅผ ๋™์‹œ์— ํ•™์Šต ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ทธ ๋ถ„ํฌ๋กœ๋ถ€ํ„ฐ ์‹ค์ œ์™€ ์œ ์‚ฌํ•œ ๋ฌผ์ฒด๋ฅผ ์•Œ๋งž์€ ๊ณณ์— ๋†“์„ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ณ ๋ คํ•  ๋ฌธ์ œ๋Š”, ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋กœ์จ, ์œ„์น˜ ์ •๋ณด๊ฐ€ ์ƒ์‹ค ๋œ ์ ์€ ์ˆ˜์˜ ๋ถ€๋ถ„ ํŒจ์น˜๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ ๋ณต์›ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๊ฒƒ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ๊ณผ ๋™์‹œ์— ๊ฐ ํŒจ์น˜์˜ ์œ„์น˜ ์ •๋ณด๋ฅผ ์ถ”์ธกํ•ด์•ผ ํ•˜๊ธฐ์— ์–ด๋ ค์šด ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ ๋Œ€์  ๋„คํŠธ์›Œํฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ฆ‰, ์ƒ์„ฑ ๋„คํŠธ์›Œํฌ๋Š” encoder-decoder ๋ฐฉ์‹์„ ์ด์šฉํ•ด์„œ ์ด๋ฏธ์ง€์™€ ์œ„์น˜ ๋งˆ์Šคํฌ๋ฅผ ์ฐพ๊ณ ์ž ํ•˜๋Š” ๋ฐ˜๋ฉด์—, ํŒ๋ณ„ ๋„คํŠธ์›Œํฌ๋Š” ์ƒ์„ฑ๋œ ๊ฐ€์งœ ์ด๋ฏธ์ง€๋ฅผ ์ฐพ์œผ๋ ค๊ณ  ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ „์ฒด ๋„คํŠธ์›Œํฌ๋Š” ์œ„์น˜, ๊ฒ‰๋ณด๊ธฐ, ์ ๋Œ€์  ๊ฒฝ์Ÿ์˜ ์„ธ ๊ฐ€์ง€ ๋ชฉ์  ํ•จ์ˆ˜๋“ค๋กœ ํ•™์Šต์ด ๋œ๋‹ค. ์œ„์น˜ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์•Œ๋งž์€ ์œ„์น˜๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๊ณ , ๊ฒ‰๋ณด๊ธฐ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์ž…๋ ฅ ํŒจ์น˜ ๋“ค์ด ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ์ƒ์— ์ ์€ ๋ณ€ํ™”๋งŒ์„ ๊ฐ€์ง€๊ณ  ๋‚จ์•„์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ์ ๋Œ€์  ๊ฒฝ์Ÿ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๊ฐ€ ์‹ค์ œ ์ด๋ฏธ์ง€์™€ ๋น„์Šทํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๊ตฌ์„ฑ๋œ ๋„คํŠธ์›Œํฌ๋Š” ๋ณ„๋„์˜ annotation ์—†์ด ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹ ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•œ ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆํ•œ ๋ฐฉ์‹์ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ž˜ ๋™์ž‘ํ•จ์„ ๋ณด์˜€๋‹ค.1 Introduction 1 1.1 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 5 2 Related Work 9 2.1 Detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Orientation estimation methods . . . . . . . . . . . . . . . . . . . . 11 2.3 Instance synthesis methods . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Image generation methods . . . . . . . . . . . . . . . . . . . . . . . 15 3 Pedestrian detection 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Determinantal Point Process Formulation . . . . . . . . . . 22 3.2.2 Quality Term . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Individualness and Diversity Feature . . . . . . . . . . . . . 25 3.2.4 Mode Finding . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.5 Relationship to Quadratic Unconstrained Binary Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 DET curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.5 Effectiveness of the quality and similarity term design . . . 44 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Head and body orientation estimation 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Algorithmic Overview . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Rich Filter Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Compressed Filter Bank . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Box Filter Bank . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Convolutional Random Projection Net . . . . . . . . . . . . . . . . 58 4.4.1 Input Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4.2 Convolutional and ReLU Layers . . . . . . . . . . . . . . . 60 4.4.3 Random Projection Layer . . . . . . . . . . . . . . . . . . . 61 4.4.4 Fully-Connected and Output Layers . . . . . . . . . . . . . 62 4.5 Convolutional Random Projection Forest . . . . . . . . . . . . . . 62 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . 65 4.6.2 CRPnet Characteristics . . . . . . . . . . . . . . . . . . . . 66 4.6.3 Head and Body Orientation Estimation . . . . . . . . . . . 67 4.6.4 Analysis of the Proposed Algorithm . . . . . . . . . . . . . 87 4.6.5 Classification Examples . . . . . . . . . . . . . . . . . . . . 87 4.6.6 Regression Examples . . . . . . . . . . . . . . . . . . . . . . 100 4.6.7 Experiments on the Original Datasets . . . . . . . . . . . . 100 4.6.8 Dataset Corrections . . . . . . . . . . . . . . . . . . . . . . 100 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 Instance synthesis and placement 109 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.1 The where module: learning a spatial distribution of object instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.2 The what module: learning a shape distribution of object instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.3 The complete pipeline . . . . . . . . . . . . . . . . . . . . . 120 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6 Image generation 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.2.1 Key Part Detection . . . . . . . . . . . . . . . . . . . . . . 135 6.2.2 Part Encoding Network . . . . . . . . . . . . . . . . . . . . 135 6.2.3 Mask Prediction Network . . . . . . . . . . . . . . . . . . . 137 6.2.4 Image Generation Network . . . . . . . . . . . . . . . . . . 138 6.2.5 Real-Fake Discriminator Network . . . . . . . . . . . . . . . 139 6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.2 Image Generation Results . . . . . . . . . . . . . . . . . . . 142 6.3.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . 150 6.3.4 Image Generation from Local Patches . . . . . . . . . . . . 150 6.3.5 Part Combination . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.6 Unsupervised Feature Learning . . . . . . . . . . . . . . . . 151 6.3.7 An Alternative Objective Function . . . . . . . . . . . . . . 151 6.3.8 An Alternative Network Structure . . . . . . . . . . . . . . 151 6.3.9 Different Number of Input Patches . . . . . . . . . . . . . . 152 6.3.10 Smaller Size of Input Patches . . . . . . . . . . . . . . . . . 153 6.3.11 Degraded Input Patches . . . . . . . . . . . . . . . . . . . . 153 6.3.12 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.13 Failure cases . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7 Conclusion and Future Work 179Docto

    3D ์† ํฌ์ฆˆ ์ธ์‹์„ ์œ„ํ•œ ์ธ์กฐ ๋ฐ์ดํ„ฐ์˜ ์ด์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2021.8. ์–‘ํ•œ์—ด.3D hand pose estimation (HPE) based on RGB images has been studied for a long time. Relevant methods have focused mainly on optimization of neural framework for graphically connected finger joints. Training RGB-based HPE models has not been easy to train because of the scarcity on RGB hand pose datasets; unlike human body pose datasets, the finger joints that span hand postures are structured delicately and exquisitely. Such structure makes accurately annotating each joint with unique 3D world coordinates difficult, which is why many conventional methods rely on synthetic data samples to cover large variations of hand postures. Synthetic dataset consists of very precise annotations of ground truths, and further allows control over the variety of data samples, yielding a learning model to be trained with a large pose space. Most of the studies, however, have performed frame-by-frame estimation based on independent static images. Synthetic visual data can provide practically infinite diversity and rich labels, while avoiding ethical issues with privacy and bias. However, for many tasks, current models trained on synthetic data generalize poorly to real data. The task of 3D human hand pose estimation is a particularly interesting example of this synthetic-to-real problem, because learning-based approaches perform reasonably well given real training data, yet labeled 3D poses are extremely difficult to obtain in the wild, limiting scalability. In this dissertation, we attempt to not only consider the appearance of a hand but incorporate the temporal movement information of a hand in motion into the learning framework for better 3D hand pose estimation performance, which leads to the necessity of a large scale dataset with sequential RGB hand images. We propose a novel method that generates a synthetic dataset that mimics natural human hand movements by re-engineering annotations of an extant static hand pose dataset into pose-flows. With the generated dataset, we train a newly proposed recurrent framework, exploiting visuo-temporal features from sequential images of synthetic hands in motion and emphasizing temporal smoothness of estimations with a temporal consistency constraint. Our novel training strategy of detaching the recurrent layer of the framework during domain finetuning from synthetic to real allows preservation of the visuo-temporal features learned from sequential synthetic hand images. Hand poses that are sequentially estimated consequently produce natural and smooth hand movements which lead to more robust estimations. We show that utilizing temporal information for 3D hand pose estimation significantly enhances general pose estimations by outperforming state-of-the-art methods in experiments on hand pose estimation benchmarks. Since a fixed set of dataset provides a finite distribution of data samples, the generalization of a learning pose estimation network is limited in terms of pose, RGB and viewpoint spaces. We further propose to augment the data automatically such that the augmented pose sampling is performed in favor of training pose estimators generalization performance. Such auto-augmentation of poses is performed within a learning feature space in order to avoid computational burden of generating synthetic sample for every iteration of updates. The proposed effort can be considered as generating and utilizing synthetic samples for network training in the feature space. This allows training efficiency by requiring less number of real data samples, enhanced generalization power over multiple dataset domains and estimation performance caused by efficient augmentation.2D ์ด๋ฏธ์ง€์—์„œ ์‚ฌ๋žŒ์˜ ์† ๋ชจ์–‘๊ณผ ํฌ์ฆˆ๋ฅผ ์ธ์‹ํ•˜๊ณ  ๊ตฌํ˜„ํ๋Š” ์—ฐ๊ตฌ๋Š” ๊ฐ ์†๊ฐ€๋ฝ ์กฐ์ธํŠธ๋“ค์˜ 3D ์œ„์น˜๋ฅผ ๊ฒ€์ถœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœํ•œ๋‹ค. ์† ํฌ์ฆˆ๋Š” ์†๊ฐ€๋ฝ ์กฐ์ธํŠธ๋“ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ  ์†๋ชฉ ๊ด€์ ˆ๋ถ€ํ„ฐ MCP, PIP, DIP ์กฐ์ธํŠธ๋“ค๋กœ ์‚ฌ๋žŒ ์†์„ ๊ตฌ์„ฑํ•˜๋Š” ์‹ ์ฒด์  ์š”์†Œ๋“ค์„ ์˜๋ฏธํ•œ๋‹ค. ์† ํฌ์ฆˆ ์ •๋ณด๋Š” ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋ ์ˆ˜ ์žˆ๊ณ  ์† ์ œ์Šค์ณ ๊ฐ์ง€ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ ์† ํฌ์ฆˆ ์ •๋ณด๊ฐ€ ๋งค์šฐ ํ›Œ๋ฅญํ•œ ์ž…๋ ฅ ํŠน์ง• ๊ฐ’์œผ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ์‚ฌ๋žŒ์˜ ์† ํฌ์ฆˆ ๊ฒ€์ถœ ์—ฐ๊ตฌ๋ฅผ ์‹ค์ œ ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋†’์€ ์ •ํ™•๋„, ์‹ค์‹œ๊ฐ„์„ฑ, ๋‹ค์–‘ํ•œ ๊ธฐ๊ธฐ์— ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๋„๋ก ๊ฐ€๋ฒผ์šด ๋ชจ๋ธ์ด ํ•„์š”ํ•˜๊ณ , ์ด๊ฒƒ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•™์Šตํ•œ ์ธ๊ณต์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š”๋ฐ์—๋Š” ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”๋กœ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌ๋žŒ ์† ํฌ์ฆˆ๋ฅผ ์ธก์ •ํ•˜๋Š” ๊ธฐ๊ณ„๋“ค์ด ๊ฝค ๋ถˆ์•ˆ์ •ํ•˜๊ณ , ์ด ๊ธฐ๊ณ„๋“ค์„ ์žฅ์ฐฉํ•˜๊ณ  ์žˆ๋Š” ์ด๋ฏธ์ง€๋Š” ์‚ฌ๋žŒ ์† ํ”ผ๋ถ€ ์ƒ‰๊ณผ๋Š” ๋งŽ์ด ๋‹ฌ๋ผ ํ•™์Šต์— ์‚ฌ์šฉํ•˜๊ธฐ๊ฐ€ ์ ์ ˆํ•˜์ง€ ์•Š๋‹ค. ๊ทธ๋Ÿฌ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ณต์ ์œผ๋กœ ๋งŒ๋“ค์–ด๋‚ธ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ๊ฐ€๊ณต ๋ฐ ์ฆ๋Ÿ‰ํ•˜์—ฌ ํ•™์Šต์— ์‚ฌ์šฉํ•˜๊ณ , ๊ทธ๊ฒƒ์„ ํ†ตํ•ด ๋” ์ข‹์€ ํ•™์Šต์„ฑ๊ณผ๋ฅผ ์ด๋ฃจ๋ ค๊ณ  ํ•œ๋‹ค. ์ธ๊ณต์ ์œผ๋กœ ๋งŒ๋“ค์–ด๋‚ธ ์‚ฌ๋žŒ ์† ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋“ค์€ ์‹ค์ œ ์‚ฌ๋žŒ ์† ํ”ผ๋ถ€์ƒ‰๊ณผ๋Š” ๋น„์Šทํ• ์ง€์–ธ์ • ๋””ํ…Œ์ผํ•œ ํ…์Šค์ณ๊ฐ€ ๋งŽ์ด ๋‹ฌ๋ผ, ์‹ค์ œ๋กœ ์ธ๊ณต ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•œ ๋ชจ๋ธ์€ ์‹ค์ œ ์† ๋ฐ์ดํ„ฐ์—์„œ ์„ฑ๋Šฅ์ด ํ˜„์ €ํžˆ ๋งŽ์ด ๋–จ์–ด์ง„๋‹ค. ์ด ๋‘ ๋ฐ์ดํƒ€์˜ ๋„๋ฉ”์ธ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด์„œ ์ฒซ๋ฒˆ์งธ๋กœ๋Š” ์‚ฌ๋žŒ์†์˜ ๊ตฌ์กฐ๋ฅผ ๋จผ์ € ํ•™์Šต ์‹œํ‚ค๊ธฐ์œ„ํ•ด, ์† ๋ชจ์…˜์„ ์žฌ๊ฐ€๊ณตํ•˜์—ฌ ๊ทธ ์›€์ง์ž„ ๊ตฌ์กฐ๋ฅผ ํ•™์Šคํ•œ ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ๋บ€ ๋‚˜๋จธ์ง€๋งŒ ์‹ค์ œ ์† ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์— ํ•™์Šตํ•˜์˜€๊ณ  ํฌ๊ฒŒ ํšจ๊ณผ๋ฅผ ๋‚ด์—ˆ๋‹ค. ์ด๋•Œ ์‹ค์ œ ์‚ฌ๋žŒ ์†๋ชจ์…˜์„ ๋ชจ๋ฐฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋กœ๋Š” ๋‘ ๋„๋ฉ”์ธ์ด ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ๋ฅผ ๋„คํŠธ์›Œํฌ ํ”ผ์ณ ๊ณต๊ฐ„์—์„œ align์‹œ์ผฐ๋‹ค. ๊ทธ๋ฟ๋งŒ์•„๋‹ˆ๋ผ ์ธ๊ณต ํฌ์ฆˆ๋ฅผ ํŠน์ • ๋ฐ์ดํ„ฐ๋“ค๋กœ augmentํ•˜์ง€ ์•Š๊ณ  ๋„คํŠธ์›Œํฌ๊ฐ€ ๋งŽ์ด ๋ณด์ง€ ๋ชปํ•œ ํฌ์ฆˆ๊ฐ€ ๋งŒ๋“ค์–ด์ง€๋„๋ก ํ•˜๋‚˜์˜ ํ™•๋ฅ  ๋ชจ๋ธ๋กœ์„œ ์„ค์ •ํ•˜์—ฌ ๊ทธ๊ฒƒ์—์„œ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ธ๊ณต ๋ฐ์ดํ„ฐ๋ฅผ ๋” ํšจ๊ณผ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ annotation์ด ์–ด๋ ค์šด ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ๋” ๋ชจ์œผ๋Š” ์ˆ˜๊ณ ์Šค๋Ÿฌ์›€ ์—†์ด ์ธ๊ณต ๋ฐ์ดํ„ฐ๋“ค์„ ๋” ํšจ๊ณผ์ ์œผ๋กœ ๋งŒ๋“ค์–ด ๋‚ด๋Š” ๊ฒƒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋” ์•ˆ์ „ํ•˜๊ณ  ์ง€์—ญ์  ํŠน์ง•๊ณผ ์‹œ๊ฐ„์  ํŠน์ง•์„ ํ™œ์šฉํ•ด์„œ ํฌ์ฆˆ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ–ˆ๋‹ค. ๋˜ํ•œ, ๋„คํŠธ์›Œํฌ๊ฐ€ ์Šค์Šค๋กœ ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฐพ์•„์„œ ํ•™์Šตํ• ์ˆ˜ ์žˆ๋Š” ์ž๋™ ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰ ๋ฐฉ๋ฒ•๋ก ๋„ ํ•จ๊ป˜ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•ด์„œ ๋” ๋‚˜์€ ์† ํฌ์ฆˆ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ํ•  ์ˆ˜ ์žˆ๋‹ค.1. Introduction 1 2. Related Works 14 3. Preliminaries: 3D Hand Mesh Model 27 4. SeqHAND: RGB-sequence-based 3D Hand Pose and Shape Estimation 31 5. Hand Pose Auto-Augment 66 6. Conclusion 85 Abstract (Korea) 101 ๊ฐ์‚ฌ์˜ ๊ธ€ 103๋ฐ•

    Mathematical Approaches for Image Enhancement Problems

    Get PDF
    This thesis develops novel techniques that can solve some image enhancement problems using theoretically and technically proven and very useful mathematical tools to image processing such as wavelet transforms, partial differential equations, and variational models. Three subtopics are mainly covered. First, color image denoising framework is introduced to achieve high quality denoising results by considering correlations between color components while existing denoising approaches can be plugged in flexibly. Second, a new and efficient framework for image contrast and color enhancement in the compressed wavelet domain is proposed. The proposed approach is capable of enhancing both global and local contrast and brightness as well as preserving color consistency. The framework does not require inverse transform for image enhancement since linear scale factors are directly applied to both scaling and wavelet coefficients in the compressed domain, which results in high computational efficiency. Also contaminated noise in the image can be efficiently reduced by introducing wavelet shrinkage terms adaptively in different scales. The proposed method is able to enhance a wavelet-coded image computationally efficiently with high image quality and less noise or other artifact. The experimental results show that the proposed method produces encouraging results both visually and numerically compared to some existing approaches. Finally, image inpainting problem is discussed. Literature review, psychological analysis, and challenges on image inpainting problem and related topics are described. An inpainting algorithm using energy minimization and texture mapping is proposed. Mumford-Shah energy minimization model detects and preserves edges in the inpainting domain by detecting both the main structure and the detailed edges. This approach utilizes faster hierarchical level set method and guarantees convergence independent of initial conditions. The estimated segmentation results in the inpainting domain are stored in segmentation map, which is referred by a texture mapping algorithm for filling textured regions. We also propose an inpainting algorithm using wavelet transform that can expect better global structure estimation of the unknown region in addition to shape and texture properties since wavelet transforms have been used for various image analysis problems due to its nice multi-resolution properties and decoupling characteristics

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. ยฉ 2011 IEEE
    corecore