15,594 research outputs found

    Deep Video Generation, Prediction and Completion of Human Action Sequences

    Full text link
    Current deep learning results on video generation are limited while there are only a few first results on video prediction and no relevant significant results on video completion. This is due to the severe ill-posedness inherent in these three problems. In this paper, we focus on human action videos, and propose a general, two-stage deep framework to generate human action videos with no constraints or arbitrary number of constraints, which uniformly address the three problems: video generation given no input frames, video prediction given the first few frames, and video completion given the first and last frames. To make the problem tractable, in the first stage we train a deep generative model that generates a human pose sequence from random noise. In the second stage, a skeleton-to-image network is trained, which is used to generate a human action video given the complete human pose sequence generated in the first stage. By introducing the two-stage strategy, we sidestep the original ill-posed problems while producing for the first time high-quality video generation/prediction/completion results of much longer duration. We present quantitative and qualitative evaluation to show that our two-stage approach outperforms state-of-the-art methods in video generation, prediction and video completion. Our video result demonstration can be viewed at https://iamacewhite.github.io/supp/index.htmlComment: Under review for CVPR 2018. Haoye and Chunyan have equal contributio

    Personalized Cinemagraphs using Semantic Understanding and Collaborative Learning

    Full text link
    Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In these media, dynamic and still elements are juxtaposed to create an artistic and narrative experience. Creating a high-quality, aesthetically pleasing cinemagraph requires isolating objects in a semantically meaningful way and then selecting good start times and looping periods for those objects to minimize visual artifacts (such a tearing). To achieve this, we present a new technique that uses object recognition and semantic segmentation as part of an optimization method to automatically create cinemagraphs from videos that are both visually appealing and semantically meaningful. Given a scene with multiple objects, there are many cinemagraphs one could create. Our method evaluates these multiple candidates and presents the best one, as determined by a model trained to predict human preferences in a collaborative way. We demonstrate the effectiveness of our approach with multiple results and a user study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary materia

    Long-Term Human Video Generation of Multiple Futures Using Poses

    Full text link
    Predicting future human behavior from an input human video is a useful task for applications such as autonomous driving and robotics. While most previous works predict a single future, multiple futures with different behavior can potentially occur. Moreover, if the predicted future is too short (e.g., less than one second), it may not be fully usable by a human or other systems. In this paper, we propose a novel method for future human pose prediction capable of predicting multiple long-term futures. This makes the predictions more suitable for real applications. Also, from the input video and the predicted human behavior, we generate future videos. First, from an input human video, we generate sequences of future human poses (i.e., the image coordinates of their body-joints) via adversarial learning. Adversarial learning suffers from mode collapse, which makes it difficult to generate a variety of multiple poses. We solve this problem by utilizing two additional inputs to the generator to make the outputs diverse, namely, a latent code (to reflect various behaviors) and an attraction point (to reflect various trajectories). In addition, we generate long-term future human poses using a novel approach based on unidimensional convolutional neural networks. Last, we generate an output video based on the generated poses for visualization. We evaluate the generated future poses and videos using three criteria (i.e., realism, diversity and accuracy), and show that our proposed method outperforms other state-of-the-art works
    corecore