3,934 research outputs found

    Online Discrimination of Nonlinear Dynamics with Switching Differential Equations

    Full text link
    How to recognise whether an observed person walks or runs? We consider a dynamic environment where observations (e.g. the posture of a person) are caused by different dynamic processes (walking or running) which are active one at a time and which may transition from one to another at any time. For this setup, switching dynamic models have been suggested previously, mostly, for linear and nonlinear dynamics in discrete time. Motivated by basic principles of computations in the brain (dynamic, internal models) we suggest a model for switching nonlinear differential equations. The switching process in the model is implemented by a Hopfield network and we use parametric dynamic movement primitives to represent arbitrary rhythmic motions. The model generates observed dynamics by linearly interpolating the primitives weighted by the switching variables and it is constructed such that standard filtering algorithms can be applied. In two experiments with synthetic planar motion and a human motion capture data set we show that inference with the unscented Kalman filter can successfully discriminate several dynamic processes online

    Substructure and Boundary Modeling for Continuous Action Recognition

    Full text link
    This paper introduces a probabilistic graphical model for continuous action recognition with two novel components: substructure transition model and discriminative boundary model. The first component encodes the sparse and global temporal transition prior between action primitives in state-space model to handle the large spatial-temporal variations within an action class. The second component enforces the action duration constraint in a discriminative way to locate the transition boundaries between actions more accurately. The two components are integrated into a unified graphical structure to enable effective training and inference. Our comprehensive experimental results on both public and in-house datasets show that, with the capability to incorporate additional information that had not been explicitly or efficiently modeled by previous methods, our proposed algorithm achieved significantly improved performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure

    Bayesian Nonparametric Inference of Switching Linear Dynamical Systems

    Get PDF
    Many complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our Bayesian nonparametric approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We additionally employ automatic relevance determination to infer a sparse set of dynamic dependencies allowing us to learn SLDS with varying state dimension or switching VAR processes with varying autoregressive order. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, the IBOVESPA stock index, and a maneuvering target tracking application.Comment: 50 pages, 7 figure

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Learning probabilistic interaction models

    Get PDF
    We live in a multi-modal world; therefore it comes as no surprise that the human brain is tailored for the integration of multi-sensory input. Inspired by the human brain, the multi-sensory data is used in Artificial Intelligence (AI) for teaching different concepts to computers. Autonomous Agents (AAs) are AI systems that sense and act autonomously in complex dynamic environments. Such agents can build up Self-Awareness (SA) by describing their experiences through multi-sensorial information with appropriate models and correlating them incrementally with the currently perceived situation to continuously expand their knowledge. This thesis proposes methods to learn such awareness models for AAs. These models include SA and situational awareness models in order to perceive and understand itself (self variables) and its surrounding environment (external variables) at the same time. An agent is considered self-aware when it can dynamically observe and understand itself and its surrounding through different proprioceptive and exteroceptive sensors which facilitate learning and maintaining a contextual representation by processing the observed multi-sensorial data. We proposed a probabilistic framework for generative and descriptive dynamic models that can lead to a computationally efficient SA system. In general, generative models facilitate the prediction of future states while descriptive models enable to select the representation that best fits the current observation. The proposed framework employs a Probabilistic Graphical Models (PGMs) such as Dynamic Bayesian Networks (DBNs) that represent a set of variables and their conditional dependencies. Once we obtain this probabilistic representation, the latter allows the agent to model interactions between itself, as observed through proprioceptive sensors, and the environment, as observed through exteroceptive sensors. In order to develop an awareness system, not only an agent needs to recognize the normal states and perform predictions accordingly, but also it is necessary to detect the abnormal states with respect to its previously learned knowledge. Therefore, there is a need to measure anomalies or irregularities in an observed situation. In this case, the agent should be aware that an abnormality (i.e., a non-stationary condition) never experienced before, is currently present. Due to our specific way of representation, which makes it possible to model multi-sensorial data into a uniform interaction model, the proposed work not only improves predictions of future events but also can be potentially used to effectuate a transfer learning process where information related to the learned model can be moved and interpreted by another body

    Feature-based annealing particle filter for robust body pose estimation

    Get PDF
    This paper presents a new annealing method for particle filtering in the context of body pose estimation. The feature-based annealing is inferred from the weighting functions obtained with common image features used for the likelihood approximation. We introduce a complementary weighting function based on the foreground extraction and we balance the different measures through the annealing layers in order to improve the posterior estimate. This technique is applied to estimate the upper body pose of a subject in a realistic multi-view environment. Comparative results between the proposed method and the common annealing strategy are presented to assess the robustness of the algorithm.Postprint (published version
    • …
    corecore