27,861 research outputs found

    Development of an evidence-based medicine mobile application for the use in medical education

    Full text link
    BACKGROUND: Evidence-based medicine (EBM) is a methodology that is being incorporated into more medical school curricula. Boston University School of Medicine was one of early adopters of Evidence Based Medicine in the United States. A growing concern in the medical community was that the complexities of applying EBM might be lost when students enter into their clinical rotations, thus there is a need for development of a tool to help reinforce the EBM principles. METHODS: The research team in collaboration with the designers of the Finding Information Framework, a custom-made EBM finding information tool, worked to develop a mobile application to help reinforce the framework for medical students. The app was designed with both Apple and PC operating systems in mind. Key features that were identified from current literature to provide the most user-friendly mobile application. Thus, the research team specifically utilized iOS and Android platforms as both platforms have a centralized app store, possess the highest volume of medical apps available, and are most widely used in the United States by medical students. RESULTS: The Finding Information Framework was a custom-made tool developed to guide new users of EBM, and help them to apply the principles in practice. The mobile application served an added convenience by allowing easy access and fast utilization of the EBM tools. The app was designed on an Android platform first due to its open-source OS and ease in app development to new programmers. Initially, the user-friendly web-based tool, App Inventor (AI), powered by Massachusetts Institute of Technology was evaluated to program the pilot Android app. Using both the AI Component Designer and the Block Editor, several problems were encountered in AI, such as the simplicity of the program and the lack of freedom in design. This moved the project to create the app natively and with a collaborative effort with the BU's Global App Initiative club. Initially, a wireframe was built using Balsamiq. Subsequently, the Android app was built using Android SDK and the iOS app was built in XCode with Objective C; both platforms had design sections prepared in Sketch, Adobe Photoshop and Illustrator. The last and final step was to obtain Boston University branding privileges for the app. CONCLUSION: The research team identified necessary features based on research to build a user-friendly, professional mobile application of an information mastery framework that can be used off-line. The app is called FIF as it is the title of the information mastery tool designed by BUSM EBM-VIG. With a clear mobile interface, it will be beneficial to the learning and training of medical students in EBM

    Writer's Market

    Get PDF

    mLearning: the classroom in your pocket?

    Get PDF
    This paper reports the findings of a 1 year project which focussed solely on the potential of handheld computers for teacher professional development. The paper considers the fit between theory and practice, viewing the developing literature on mLearning as it might apply to teacher professional development, in the light of research evidence from project teachers using handheld computers. The teachers themselves used the analytical framework for teacher professional knowledge developed by Banks, Leach and Moon to consider their own experiences with the handheld computers. The study finds that handheld digital tools hold a number of pedagogic and pragmatic advantages over laptop or desktop computers for teachers, especially in rural communities; however, further technical development is required to fully orient the devices to classroom rather than office practices

    Touch Screen Avatar English Learning System For University Students Learning Simplicity

    Get PDF
    This paper discusses on touch screen avatar for an English language learning application system. The system would be a combination of avatar as Animated Pedagogical Agent (APA) and a touch screen application that adapt the up to date gesture-based computing which is found as having potential to change the way how we learn as it could reduce the amount of Information Communication Technology (ICT) devices used during teaching and learning process. The key here is interaction between university students and touch screen avatar intelligent application system as well as learning resources that could be learned anytime anywhere twenty four hours in seven days 24/7 based on their study time preference where they could learn at their own comfort out of the tradition. The students would be provided with a learning tool that could help them learn interactively with the current trend which they might be interested with based on their own personalization. Apart from that, their performance shall be monitored from a distance and evaluated to avoid disturbing their learning process from working smoothly and getting rid of feeling of being controlled. Thus, the students are expected to have lower affective filter level that may enhance the way they learn unconsciously. Keywords: Gesture-Based Computing, Avatar, Portable Learning Tool, Interactivity, Language Learnin

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • …
    corecore