253 research outputs found

    Human gait recognition based on multiview gait sequences

    Get PDF
    Copyright © 2008 X. Huang and N. V. Boulgouris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.European Commissio

    Pyramidal Fisher Motion for Multiview Gait Recognition

    Full text link
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent `AVA Multiview Gait' dataset. The results show that this new approach achieves promising results in the problem of gait recognition.Comment: Submitted to International Conference on Pattern Recognition, ICPR, 201

    GII Representation-Based Cross-View Gait Recognition by Discriminative Projection With List-Wise Constraints

    Get PDF
    Remote person identification by gait is one of the most important topics in the field of computer vision and pattern recognition. However, gait recognition suffers severely from the appearance variance caused by the view change. It is very common that gait recognition has a high performance when the view is fixed but the performance will have a sharp decrease when the view variance becomes significant. Existing approaches have tried all kinds of strategies like tensor analysis or view transform models to slow down the trend of performance decrease but still have potential for further improvement. In this paper, a discriminative projection with list-wise constraints (DPLC) is proposed to deal with view variance in cross-view gait recognition, which has been further refined by introducing a rectification term to automatically capture the principal discriminative information. The DPLC with rectification (DPLCR) embeds list-wise relative similarity measurement among intraclass and inner-class individuals, which can learn a more discriminative and robust projection. Based on the original DPLCR, we have introduced the kernel trick to exploit nonlinear cross-view correlations and extended DPLCR to deal with the problem of multiview gait recognition. Moreover, a simple yet efficient gait representation, namely gait individuality image (GII), based on gait energy image is proposed, which could better capture the discriminative information for cross view gait recognition. Experiments have been conducted in the CASIA-B database and the experimental results demonstrate the outstanding performance of both the DPLCR framework and the new GII representation. It is shown that the DPLCR-based cross-view gait recognition has outperformed the-state-of-the-art approaches in almost all cases under large view variance. The combination of the GII representation and the DPLCR has further enhanced the performance to be a new benchmark for cross-view gait recognition

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Fisher Motion Descriptor for Multiview Gait Recognition

    Get PDF
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to de ne custom spatial con gurations of the descriptors around the target person, obtaining a rich representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the di erent spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on `CASIA' dataset [3] (parts B and C), `TUM GAID' dataset [4], `CMU MoBo' dataset [5] and the recent `AVA Multiview Gait' dataset [6]. The results show that this new approach achieves state-of-the-art results in the problem of gait recognition, allowing to recognize walking people from diverse viewpoints on single and multiple camera setups, wearing di erent clothes, carrying bags, walking at diverse speeds and not limited to straight walking paths

    Gait recognition with shifted energy image and structural feature extraction

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we present a novel and efficient gait recognition system. The proposed system uses two novel gait representations, i.e., the shifted energy image and the gait structural profile, which have increased robustness to some classes of structural variations. Furthermore, we introduce a novel method for the simulation of walking conditions and the generation of artificial subjects that are used for the application of linear discriminant analysis. In the decision stage, the two representations are fused. Thorough experimental evaluation, conducted using one traditional and two new databases, demonstrates the advantages of the proposed system in comparison with current state-of-the-art systems

    On Using Gait in Forensic Biometrics

    No full text
    Given the continuing advances in gait biometrics, it appears prudent to investigate the translation of these techniques for forensic use. We address the question as to the confidence that might be given between any two such measurements. We use the locations of ankle, knee and hip to derive a measure of the match between walking subjects in image sequences. The Instantaneous Posture Match algorithm, using Harr templates, kinematics and anthropomorphic knowledge is used to determine their location. This is demonstrated using real CCTV recorded at Gatwick Airport, laboratory images from the multi-view CASIA-B dataset and an example of real scene of crime video. To access the measurement confidence we study the mean intra- and inter-match scores as a function of database size. These measures converge to constant and separate values, indicating that the match measure derived from individual comparisons is considerably smaller than the average match measure from a population
    corecore