204,999 research outputs found

    Understanding Social–Ecological Systems using Loop Analysis

    Get PDF
    The sustainable management of social–ecological systems (SESs) requires that we understand the complex structure of relationships and feedbacks among ecosystem components and socioeconomic entities. Therefore, the construction and analysis of models integrating ecological and human actors is crucial for describing the functioning of SESs, and qualitative modeling represents an ideal tool since it allows studying dependencies among variables of diverse types. In particular, the qualitative technique of loop analysis yields predictions about how a system’s variables respond to stress factors. Different interaction types, scarce information about functional relationships among variables, and uncertainties in the values of the parameters are the rule rather than exceptions when studying SESs. Accordingly, loop analysis seems to be perfectly suitable to investigate them. Here, we introduce the key aspects of loop analysis, discuss its applications to SESs, and suggest it enables making the first steps toward the integration of the three dimensions of sustainability

    Uncertainty in epidemiology and health risk assessment

    Get PDF

    Socio-hydrological modelling: a review asking “why, what and how?”

    Get PDF
    Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought

    Scientific knowledge and scientific uncertainty in bushfire and flood risk mitigation: literature review

    Get PDF
    EXECUTIVE SUMMARY The Scientific Diversity, Scientific Uncertainty and Risk Mitigation Policy and Planning (RMPP) project aims to investigate the diversity and uncertainty of bushfire and flood science, and its contribution to risk mitigation policy and planning. The project investigates how policy makers, practitioners, courts, inquiries and the community differentiate, understand and use scientific knowledge in relation to bushfire and flood risk. It uses qualitative social science methods and case studies to analyse how diverse types of knowledge are ordered and judged as salient, credible and authoritative, and the pragmatic meaning this holds for emergency management across the PPRR spectrum. This research report is the second literature review of the RMPP project and was written before any of the case studies had been completed. It synthesises approximately 250 academic sources on bushfire and flood risk science, including research on hazard modelling, prescribed burning, hydrological engineering, development planning, meteorology, climatology and evacuation planning. The report also incorporates theoretical insights from the fields of risk studies and science and technology studies (STS), as well as indicative research regarding the public understandings of science, risk communication and deliberative planning. This report outlines the key scientific practices (methods and knowledge) and scientific uncertainties in bushfire and flood risk mitigation in Australia. Scientific uncertainties are those ‘known unknowns’ and ‘unknown unknowns’ that emerge from the development and utilisation of scientific knowledge. Risk mitigation involves those processes through which agencies attempt to limit the vulnerability of assets and values to a given hazard. The focus of this report is the uncertainties encountered and managed by risk mitigation professionals in regards to these two hazards, though literature regarding natural sciences and the scientific method more generally are also included where appropriate. It is important to note that while this report excludes professional experience and local knowledge from its consideration of uncertainties and knowledge, these are also very important aspects of risk mitigation which will be addressed in the RMPP project’s case studies. Key findings of this report include: Risk and scientific knowledge are both constructed categories, indicating that attempts to understand any individual instance of risk or scientific knowledge should be understood in light of the social, political, economic, and ecological context in which they emerge. Uncertainty is a necessary element of scientific methods, and as such risk mitigation practitioners and researchers alike should seek to ‘embrace uncertainty’ (Moore et al., 2005) as part of navigating bushfire and flood risk mitigation

    Introducing the STAMP method in road tunnel safety assessment

    Get PDF
    After the tremendous accidents in European road tunnels over the past decade, many risk assessment methods have been proposed worldwide, most of them based on Quantitative Risk Assessment (QRA). Although QRAs are helpful to address physical aspects and facilities of tunnels, current approaches in the road tunnel field have limitations to model organizational aspects, software behavior and the adaptation of the tunnel system over time. This paper reviews the aforementioned limitations and highlights the need to enhance the safety assessment process of these critical infrastructures with a complementary approach that links the organizational factors to the operational and technical issues, analyze software behavior and models the dynamics of the tunnel system. To achieve this objective, this paper examines the scope for introducing a safety assessment method which is based on the systems thinking paradigm and draws upon the STAMP model. The method proposed is demonstrated through a case study of a tunnel ventilation system and the results show that it has the potential to identify scenarios that encompass both the technical system and the organizational structure. However, since the method does not provide quantitative estimations of risk, it is recommended to be used as a complementary approach to the traditional risk assessments rather than as an alternative. (C) 2012 Elsevier Ltd. All rights reserved

    Freshwater ecosystem services in mining regions : modelling options for policy development support

    Get PDF
    The ecosystem services (ES) approach offers an integrated perspective of social-ecological systems, suitable for holistic assessments of mining impacts. Yet for ES models to be policy-relevant, methodological consensus in mining contexts is needed. We review articles assessing ES in mining areas focusing on freshwater components and policy support potential. Twenty-six articles were analysed concerning (i) methodological complexity (data types, number of parameters, processes and ecosystem-human integration level) and (ii) potential applicability for policy development (communication of uncertainties, scenario simulation, stakeholder participation and management recommendations). Articles illustrate mining impacts on ES through valuation exercises mostly. However, the lack of ground-and surface-water measurements, as well as insufficient representation of the connectivity among soil, water and humans, leave room for improvements. Inclusion of mining-specific environmental stressors models, increasing resolution of topographies, determination of baseline ES patterns and inclusion of multi-stakeholder perspectives are advantageous for policy support. We argue that achieving more holistic assessments exhorts practitioners to aim for high social-ecological connectivity using mechanistic models where possible and using inductive methods only where necessary. Due to data constraints, cause-effect networks might be the most feasible and best solution. Thus, a policy-oriented framework is proposed, in which data science is directed to environmental modelling for analysis of mining impacts on water ES
    corecore