1,594 research outputs found

    Occlusion handling in multiple people tracking

    Get PDF
    Object tracking with occlusion handling is a challenging problem in automated video surveillance. Occlusion handling and tracking have always been considered as separate modules. We have proposed an automated video surveillance system, which automatically detects occlusions and perform occlusion handling, while the tracker continues to track resulting separated objects. A new approach based on sub-blobbing is presented for tracking objects accurately and steadily, when the target encounters occlusion in video sequences. We have used a feature-based framework for tracking, which involves feature extraction and feature matching

    Occlusion Handling using Semantic Segmentation and Visibility-Based Rendering for Mixed Reality

    Full text link
    Real-time occlusion handling is a major problem in outdoor mixed reality system because it requires great computational cost mainly due to the complexity of the scene. Using only segmentation, it is difficult to accurately render a virtual object occluded by complex objects such as trees, bushes etc. In this paper, we propose a novel occlusion handling method for real-time, outdoor, and omni-directional mixed reality system using only the information from a monocular image sequence. We first present a semantic segmentation scheme for predicting the amount of visibility for different type of objects in the scene. We also simultaneously calculate a foreground probability map using depth estimation derived from optical flow. Finally, we combine the segmentation result and the probability map to render the computer generated object and the real scene using a visibility-based rendering method. Our results show great improvement in handling occlusions compared to existing blending based methods

    Feature-based tracking of multiple people for intelligent video surveillance.

    Get PDF
    Intelligent video surveillance is the process of performing surveillance task automatically by a computer vision system. It involves detecting and tracking people in the video sequence and understanding their behavior. This thesis addresses the problem of detecting and tracking multiple moving people with unknown background. We have proposed a feature-based framework for tracking, which requires feature extraction and feature matching. We have considered color, size, blob bounding box and motion information as features of people. In our feature-based tracking system, we have proposed to use Pearson correlation coefficient for matching feature-vector with temporal templates. The occlusion problem has been solved by histogram backprojection. Our tracking system is fast and free from assumptions about human structure. We have implemented our tracking system using Visual C++ and OpenCV and tested on real-world images and videos. Experimental results suggest that our tracking system achieved good accuracy and can process videos in 10-15 fps.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .A42. Source: Masters Abstracts International, Volume: 45-01, page: 0347. Thesis (M.Sc.)--University of Windsor (Canada), 2006
    corecore