7 research outputs found

    Big data in epilepsy: Clinical and research considerations. Report from the Epilepsy Big Data Task Force of the International League Against Epilepsy

    Get PDF
    Epilepsy is a heterogeneous condition with disparate etiologies and phenotypic and genotypic characteristics. Clinical and research aspects are accordingly varied, ranging from epidemiological to molecular, spanning clinical trials and outcomes, gene and drug discovery, imaging, electroencephalography, pathology, epilepsy surgery, digital technologies, and numerous others. Epilepsy data are collected in the terabytes and petabytes, pushing the limits of current capabilities. Modern computing firepower and advances in machine and deep learning, pioneered in other diseases, open up exciting possibilities for epilepsy too. However, without carefully designed approaches to acquiring, standardizing, curating, and making available such data, there is a risk of failure. Thus, careful construction of relevant ontologies, with intimate stakeholder inputs, provides the requisite scaffolding for more ambitious big data undertakings, such as an epilepsy data commons. In this review, we assess the clinical and research epilepsy landscapes in the big data arena, current challenges, and future directions, and make the case for a systematic approach to epilepsy big data

    Smart homes for the elderly of rural Oklahoma: A strategy for ethical implementation

    Get PDF
    Smart homes, telemedicine, and robots are often proposed as solutions to the upcoming problem of providing care to millions of older adults. The number of elderly in need of care has risen substantially, the number of available caretakers has not kept pace with demand, and this disparity will only increase as the Baby Boomer generation ages. The care of the elderly, which results in dependency on their part, conflicts with the strong individualism of American society, sometimes causing difficulties between the patient and caretaker(s) when making care decisions. Thus, many ethical concerns have been voiced about smart home technology, from privacy issues to fears of isolation (Fritz, 2015). These concerns vary based on the cultural background of the elderly user, with upper-middle class users feeling more comfortable with the technology (Fritz, 2015). Rural users, who are most in need of the technology due to having fewer nearby healthcare providers, and dementia users, who are in need of the technology to help manage their illness during the early stages while living at home, are the ones who tend to distrust the technology the most (Fritz, 2015). Smart home implementation for the elderly has progressed rapidly in recent years, but research has fallen behind in the sense of connecting theory and practice (Berridge, 2018). As a way to address this, the author proposes a study with researchers in the Dept. of Telemedicine at the OSU Medical School in Tulsa of the rural elderly in Oklahoma, since Oklahoma has approved insurance reimbursement for telemedicine, that would be expanded to include assistive technologies for smart homes in order to try to develop a participatory model for the ethical diffusion of this technology on a mass level

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Securing Arm Platform: From Software-Based To Hardware-Based Approaches

    Get PDF
    With the rapid proliferation of the ARM architecture on smart mobile phones and Internet of Things (IoT) devices, the security of ARM platform becomes an emerging problem. In recent years, the number of malware identified on ARM platforms, especially on Android, shows explosive growth. Evasion techniques are also used in these malware to escape from being detected by existing analysis systems. In our research, we first present a software-based mechanism to increase the accuracy of existing static analysis tools by reassembleable bytecode extraction. Our solution collects bytecode and data at runtime, and then reassemble them offline to help static analysis tools to reveal the hidden behavior in an application. Further, we implement a hardware-based transparent malware analysis framework for general ARM platforms to defend against the traditional evasion techniques. Our framework leverages hardware debugging features and Trusted Execution Environment (TEE) to achieve transparent tracing and debugging with reasonable overhead. To learn the security of the involved hardware debugging features, we perform a comprehensive study on the ARM debugging features and summarize the security implications. Based on the implications, we design a novel attack scenario that achieves privilege escalation via misusing the debugging features in inter-processor debugging model. The attack has raised our concern on the security of TEEs and Cyber-physical System (CPS). For a better understanding of the security of TEEs, we investigate the security of various TEEs on different architectures and platforms, and state the security challenges. A study of the deploying the TEEs on edge platform is also presented. For the security of the CPS, we conduct an analysis on the real-world traffic signal infrastructure and summarize the security problems
    corecore