12,491 research outputs found

    Disentangling the effects of phonation and articulation: Hemispheric asymmetries in the auditory N1m response of the human brain

    Get PDF
    BACKGROUND: The cortical activity underlying the perception of vowel identity has typically been addressed by manipulating the first and second formant frequency (F1 & F2) of the speech stimuli. These two values, originating from articulation, are already sufficient for the phonetic characterization of vowel category. In the present study, we investigated how the spectral cues caused by articulation are reflected in cortical speech processing when combined with phonation, the other major part of speech production manifested as the fundamental frequency (F0) and its harmonic integer multiples. To study the combined effects of articulation and phonation we presented vowels with either high (/a/) or low (/u/) formant frequencies which were driven by three different types of excitation: a natural periodic pulseform reflecting the vibration of the vocal folds, an aperiodic noise excitation, or a tonal waveform. The auditory N1m response was recorded with whole-head magnetoencephalography (MEG) from ten human subjects in order to resolve whether brain events reflecting articulation and phonation are specific to the left or right hemisphere of the human brain. RESULTS: The N1m responses for the six stimulus types displayed a considerable dynamic range of 115–135 ms, and were elicited faster (~10 ms) by the high-formant /a/ than by the low-formant /u/, indicating an effect of articulation. While excitation type had no effect on the latency of the right-hemispheric N1m, the left-hemispheric N1m elicited by the tonally excited /a/ was some 10 ms earlier than that elicited by the periodic and the aperiodic excitation. The amplitude of the N1m in both hemispheres was systematically stronger to stimulation with natural periodic excitation. Also, stimulus type had a marked (up to 7 mm) effect on the source location of the N1m, with periodic excitation resulting in more anterior sources than aperiodic and tonal excitation. CONCLUSION: The auditory brain areas of the two hemispheres exhibit differential tuning to natural speech signals, observable already in the passive recording condition. The variations in the latency and strength of the auditory N1m response can be traced back to the spectral structure of the stimuli. More specifically, the combined effects of the harmonic comb structure originating from the natural voice excitation caused by the fluctuating vocal folds and the location of the formant frequencies originating from the vocal tract leads to asymmetric behaviour of the left and right hemisphere

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State vowel Categorization

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. The transformation from speaker-dependent to speaker-independent language representations enables speech to be learned and understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitch-independent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State Vowel Identification

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song

    Get PDF
    Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70–170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli

    Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features

    Get PDF
    During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6–1.3 Hz), words (1.8–3 Hz), syllables (2.8–4.8 Hz), and phonemes (8–12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13–30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory–motor pathway

    Analytical methods and experimental approaches for electrophysiological studies of brain oscillations

    Get PDF
    Brain oscillations are increasingly the subject of electrophysiological studies probing their role in the functioning and dysfunction of the human brain. In recent years this research area has seen rapid and significant changes in the experimental approaches and analysis methods. This article reviews these developments and provides a structured overview of experimental approaches, spectral analysis techniques and methods to establish relationships between brain oscillations and behaviour

    Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex

    Get PDF
    High-gamma-band (\u3e60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca\u27s area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics
    • …
    corecore