21,786 research outputs found

    Interaction platform-orientated perspective in designing novel applications

    Get PDF
    The lack of HCI offerings in the invention of novel software applications and the bias of design knowledge towards desktop GUI make it difficult for us to design for novel scenarios and applications that leverage emerging computational technologies. These include new media platforms such as mobiles, interactive TV, tabletops and large multi-touch walls on which many of our future applications will operate. We argue that novel application design should come not from user-centred requirements engineering as in developing a conventional application, but from understanding the interaction characteristics of the new platforms. Ensuring general usability for a particular interaction platform without rigorously specifying envisaged usage contexts helps us to design an artifact that does not restrict the possible application contexts and yet is usable enough to help brainstorm its more exact place for future exploitation

    Multi-color detection of gravitational arcs

    Full text link
    Strong gravitational lensing provides fundamental insights into the understanding of the dark matter distribution in massive galaxies, galaxy clusters and the background cosmology. Despite their importance, the number of gravitational arcs discovered so far is small. The urge for more complete, large samples and unbiased methods of selecting candidates is rising. A number of methods for the automatic detection of arcs have been proposed in the literature, but large amounts of spurious detections retrieved by these methods forces observers to visually inspect thousands of candidates per square degree in order to clean the samples. This approach is largely subjective and requires a huge amount of eye-ball checking, especially considering the actual and upcoming wide field surveys, which will cover thousands of square degrees. In this paper we study the statistical properties of colours of gravitational arcs detected in the 37 deg^2 of the CARS survey. We have found that most of them lie in a relatively small region of the (g'-r',r'-i') colour-colour diagram. To explain this property, we provide a model which includes the lensing optical depth expected in a LCDM cosmology that, in combination with the sources' redshift distribution of a given survey, in our case CARS, peaks for sources at redshift z~1. By further modelling the colours derived from the SED of the galaxies dominating the population at that redshift, the model well reproduces the observed colours. By taking advantage of the colour selection suggested by both data and model, we show that this multi-band filtering returns a sample 83% complete and a contamination reduced by a factor of ~6.5 with respect to the single-band arcfinder sample. New arc candidates are also proposed.Comment: 13 pages, 7 figures, 4 tables; title modified, text extended, figures improved, error estimate improve

    Holistic, Instance-Level Human Parsing

    Full text link
    Object parsing -- the task of decomposing an object into its semantic parts -- has traditionally been formulated as a category-level segmentation problem. Consequently, when there are multiple objects in an image, current methods cannot count the number of objects in the scene, nor can they determine which part belongs to which object. We address this problem by segmenting the parts of objects at an instance-level, such that each pixel in the image is assigned a part label, as well as the identity of the object it belongs to. Moreover, we show how this approach benefits us in obtaining segmentations at coarser granularities as well. Our proposed network is trained end-to-end given detections, and begins with a category-level segmentation module. Thereafter, a differentiable Conditional Random Field, defined over a variable number of instances for every input image, reasons about the identity of each part by associating it with a human detection. In contrast to other approaches, our method can handle the varying number of people in each image and our holistic network produces state-of-the-art results in instance-level part and human segmentation, together with competitive results in category-level part segmentation, all achieved by a single forward-pass through our neural network.Comment: Poster at BMVC 201
    corecore