104 research outputs found

    Evaluating classification accuracy for modern learning approaches

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149333/1/sim8103_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149333/2/sim8103.pd

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Optimization Based Tumor Classification from Microarray Gene Expression Data

    Get PDF
    An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types.We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described.The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of data sets, HBE method is an effective and consistent tool for cancer type prediction with a small number of gene markers

    Local depth patterns for fine-grained activity recognition in depth videos

    Full text link
    © 2016 IEEE. Fine-grained activities are human activities involving small objects and small movements. Automatic recognition of such activities can prove useful for many applications, including detailed diarization of meetings and training sessions, assistive human-computer interaction and robotics interfaces. Existing approaches to fine-grained activity recognition typically leverage the combined use of multiple sensors including cameras, RFID tags, gyroscopes and accelerometers borne by the monitored people and target objects. Although effective, the downside of these solutions is that they require minute instrumentation of the environment that is intrusive and hard to scale. To this end, this paper investigates fine-grained activity recognition in a kitchen setting by solely using a depth camera. The primary contribution of this work is an aggregated depth descriptor that effectively captures the shape of the objects and the actors. Experimental results over the challenging '50 Salads' dataset of kitchen activities show an accuracy comparable to that of a state-of-the-art approach based on multiple sensors, thereby validating a less intrusive and more practical way of monitoring fine-grained activities

    CatSIM: A Categorical Image Similarity Metric

    Get PDF
    We introduce CatSIM, a new similarity metric for binary and multinary two- and three-dimensional images and volumes. CatSIM uses a structural similarity image quality paradigm and is robust to small perturbations in location so that structures in similar, but not entirely overlapping, regions of two images are rated higher than using simple matching. The metric can also compare arbitrary regions inside images. CatSIM is evaluated on artificial data sets, image quality assessment surveys and two imaging applicationsComment: 17 pages, 16 figures, 10 table

    A NEW METHOD FOR PREDICTING EARLY-STAGE LUNG NODULES BASED ON PSO-SVM HYBRID ALGORITHM

    Get PDF
    The aim of this article was to use the Support Vector Machine (SVM) to predict the benign and malignant solitary pulmonary nodules (SPNs) in early-stage lung cancer in order to lessen the patient’s pain and save the money. Fifty and one patient records were collected .Each record consisted of four clinical characteristics and nine morphological characteristics. The SVM classifier was built by radial basis kernel function. The penalty factor C and kernel parameter σ were optimized by comparing particle swarm optimization (PSO), grid search algorithm (GSA) and genetic algorithm (GA)and then employed to diagnose the SPNs. By comparison with a Logistic regression (LR) model, the overall results of our calculation demonstrated that the area under the receiver operator characteristic (ROC) curve for the model (0.913 ± 0.051, p\u3c0.05) was higher than the LR model. The accuracy, sensitivity and specificity in the model were 90.7%, 89.3% and 93.3% respectively. It is represented that the PSO-SVM model can be used in predicting the early-stage lung nodules

    Comparison of Human Pilot (Remote) Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    Get PDF
    This paper concerns about the human pilot or remote control system in UAV navigation. Demands for Unmanned Aerial Vehicle (UAV) are increasing tremendously in aviation industry and research area. UAV is a flying machine that can fly with no pilot onboard and can be controlled by ground-based operators. In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques. The overall reviews discussed in this paper have been studied in various research sources related to UAV and its navigation system. Every method has its pros and cons depends on the situation. At the end of the study, those methods will be analyzed and the best method will be chosen in term of accuracy and efficiency

    Frugal hypothesis testing and classification

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-175).The design and analysis of decision rules using detection theory and statistical learning theory is important because decision making under uncertainty is pervasive. Three perspectives on limiting the complexity of decision rules are considered in this thesis: geometric regularization, dimensionality reduction, and quantization or clustering. Controlling complexity often reduces resource usage in decision making and improves generalization when learning decision rules from noisy samples. A new margin-based classifier with decision boundary surface area regularization and optimization via variational level set methods is developed. This novel classifier is termed the geometric level set (GLS) classifier. A method for joint dimensionality reduction and margin-based classification with optimization on the Stiefel manifold is developed. This dimensionality reduction approach is extended for information fusion in sensor networks. A new distortion is proposed for the quantization or clustering of prior probabilities appearing in the thresholds of likelihood ratio tests. This distortion is given the name mean Bayes risk error (MBRE). The quantization framework is extended to model human decision making and discrimination in segregated populations.by Kush R. Varshney.Ph.D

    Shape Retrieval Methods for Architectural 3D Models

    Get PDF
    This thesis introduces new methods for content-based retrieval of architecture-related 3D models. We thereby consider two different overall types of architectural 3D models. The first type consists of context objects that are used for detailed design and decoration of 3D building model drafts. This includes e.g. furnishing for interior design or barriers and fences for forming the exterior environment. The second type consists of actual building models. To enable efficient content-based retrieval for both model types that is tailored to the user requirements of the architectural domain, type-specific algorithms must be developed. On the one hand, context objects like furnishing that provide similar functions (e.g. seating furniture) often share a similar shape. Nevertheless they might be considered to belong to different object classes from an architectural point of view (e.g. armchair, elbow chair, swivel chair). The differentiation is due to small geometric details and is sometimes only obvious to an expert from the domain. Building models on the other hand are often distinguished according to the underlying floor- and room plans. Topological floor plan properties for example serve as a starting point for telling apart residential and commercial buildings. The first contribution of this thesis is a new meta descriptor for 3D retrieval that combines different types of local shape descriptors using a supervised learning approach. The approach enables the differentiation of object classes according to small geometric details and at the same time integrates expert knowledge from the field of architecture. We evaluate our approach using a database containing arbitrary 3D models as well as on one that only consists of models from the architectural domain. We then further extend our approach by adding a sophisticated shape descriptor localization strategy. Additionally, we exploit knowledge about the spatial relationship of object components to further enhance the retrieval performance. In the second part of the thesis we introduce attributed room connectivity graphs (RCGs) as a means to characterize a 3D building model according to the structure of its underlying floor plans. We first describe how RCGs are inferred from a given building model and discuss how substructures of this graph can be queried efficiently. We then introduce a new descriptor denoted as Bag-of-Attributed-Subgraphs that transforms attributed graphs into a vector-based representation using subgraph embeddings. We finally evaluate the retrieval performance of this new method on a database consisting of building models with different floor plan types. All methods presented in this thesis are aimed at an as automated as possible workflow for indexing and retrieval such that only minimum human interaction is required. Accordingly, only polygon soups are required as inputs which do not need to be manually repaired or structured. Human effort is only needed for offline groundtruth generation to enable supervised learning and for providing information about the orientation of building models and the unit of measurement used for modeling
    • …
    corecore