601 research outputs found

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Image Compression using Discrete Cosine Transform & Discrete Wavelet Transform

    Get PDF
    Image Compression addresses the problem of reducing the amount of data required to represent the digital image. Compression is achieved by the removal of one or more of three basic data redundancies: (1) Coding redundancy, which is present when less than optimal (i.e. the smallest length) code words are used; (2) Interpixel redundancy, which results from correlations between the pixels of an image & (3) psycho visual redundancy which is due to data that is ignored by the human visual system (i.e. visually nonessential information). Huffman codes contain the smallest possible number of code symbols (e.g., bits) per source symbol (e.g., grey level value) subject to the constraint that the source symbols are coded one at a time. So, Huffman coding when combined with technique of reducing the image redundancies using Discrete Cosine Transform (DCT) helps in compressing the image data to a very good extent. The Discrete Cosine Transform (DCT) is an example of transform coding. The current JPEG standard uses the DCT as its basis. The DC relocates the highest energies to the upper left corner of the image. The lesser energy or information is relocated into other areas. The DCT is fast. It can be quickly calculated and is best for images with smooth edges like photos with human subjects. The DCT coefficients are all real numbers unlike the Fourier Transform. The Inverse Discrete Cosine Transform (IDCT) can be used to retrieve the image from its transform representation. The Discrete wavelet transform (DWT) has gained widespread acceptance in signal processing and image compression. Because of their inherent multi-resolution nature, wavelet-coding schemes are especially suitable for applications where scalability and tolerable degradation are important. Recently the JPEG committee has released its new image coding standard, JPEG-2000, which has been based upon DWT

    Data Compression in the Petascale Astronomy Era: a GERLUMPH case study

    Full text link
    As the volume of data grows, astronomers are increasingly faced with choices on what data to keep -- and what to throw away. Recent work evaluating the JPEG2000 (ISO/IEC 15444) standards as a future data format standard in astronomy has shown promising results on observational data. However, there is still a need to evaluate its potential on other type of astronomical data, such as from numerical simulations. GERLUMPH (the GPU-Enabled High Resolution cosmological MicroLensing parameter survey) represents an example of a data intensive project in theoretical astrophysics. In the next phase of processing, the ~27 terabyte GERLUMPH dataset is set to grow by a factor of 100 -- well beyond the current storage capabilities of the supercomputing facility on which it resides. In order to minimise bandwidth usage, file transfer time, and storage space, this work evaluates several data compression techniques. Specifically, we investigate off-the-shelf and custom lossless compression algorithms as well as the lossy JPEG2000 compression format. Results of lossless compression algorithms on GERLUMPH data products show small compression ratios (1.35:1 to 4.69:1 of input file size) varying with the nature of the input data. Our results suggest that JPEG2000 could be suitable for other numerical datasets stored as gridded data or volumetric data. When approaching lossy data compression, one should keep in mind the intended purposes of the data to be compressed, and evaluate the effect of the loss on future analysis. In our case study, lossy compression and a high compression ratio do not significantly compromise the intended use of the data for constraining quasar source profiles from cosmological microlensing.Comment: 15 pages, 9 figures, 5 tables. Published in the Special Issue of Astronomy & Computing on The future of astronomical data format

    MEDICAL IMAGES COMPRESSION BASED ON SPIHT AND BAT INSPIRED ALGORITHMS

    Get PDF
    There is a significant necessity to compress the medical images for the purposes of communication and storage.Most currently available compression techniques produce an extremely high compression ratio with a high-quality loss. Inmedical applications, the diagnostically significant regions (interest region) should have a high image quality. Therefore, it ispreferable to compress the interest regions by utilizing the Lossless compression techniques, whilst the diagnostically lessersignificant regions (non-interest region) can be compressed by utilizing the Lossy compression techniques. In this paper, a hybridtechnique of Set Partition in Hierarchical Tree (SPIHT) and Bat inspired algorithms have been utilized for Lossless compressionthe interest region, and the non-interest region is loosely compressed with the Discrete Cosine Transform (DCT) technique.The experimental results present that the proposed hybrid technique enhances the compression performance and ratio. Also,the utilization of DCT increases compression performance with low computational complexity
    corecore